2016 General Notebook

Author: Andrew D. Nguyen

Affiliation: Biology Department, University of Vermont

Contact: anbe642@gmail.com

Date started: 2016-05-13

Date end (last modified): 2017-01-01

Introduction:
I wish I started an online notebook earlier, but maybe it's not too late? Anyway, I'll use this doc to share my ideas and log the progress of my dissertation.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

General Lab protocols found here for heat shocks and RNA related experiments and here for protein related experiments.

Table of Contents (Layout follows Page number: Date. Title of entry)



Page 1: 2016-05-13. Indirect genetic effects.

Q:How does the social environment impact traits of individuals? Or what is the contribution of indirect genetic effects on an individual?

In ant colonies, sisters are highly related if the queen mated once.

H1: Ant workers traits are more optimal when the rearing environment is of the same genotype compared to different genotype.

Experiment: Cross foster experiment. Each ant colony is a different genotype, take 20 ants and split them up so each colony rears each other's babys.

This isnt a new idea: Linksvayer 2007. What would be interesting is to test the role of IGE in thermal ecology. Take a Northern(experiecnes cold) ant species and Southern (experiences warm) ant species and do a cross foster experiment. One outcome is that ants reared in the warm tolerant species will reare young in a way so that the baby has greater thermal tolerance than being reared by its own (cold tolerant genotype/species).



Page 2: 2016-05-13. Comparing G matrices of different populations

Since I've been an RA since January 2015, I've been able to teach myself things. One of my emerging obsessions is understanding how multiple traits evolve or respond to selection. For example a thermal performance curve is multivariate and how can this curve change?


It can vary vertically, shift right to left (warmer-cooler variation), and/or exhibit generalist-specialist variation. Kingsolver et al. 2105 has a cool paper showing how you can construct a G matrix, decompose it with a PCA to look at the genetic correlations and it subsequently captures how G matrices can change or thermal performance curves can respond to selection together. So all positive loadings equals vertical shifts, positive relationships of loadings with temperature equals warmer-cooler variation, and a bell shaped curve equals the generalist-specialist variation.

Example table of loadings across each temperature:

Variation1520253035
Vertical11111
Warmer-cooler-1-.50.51
Generalist-specialist-1.51.5-1

Whoa, what if you wanted to compare G matrices of different populations? One way is to do a PCA decomp with each G matrix constructed from each population. Then simply look at how the loadings change as a function of temperature between populations. Statistically, you can do an ANCOVA such as:

 
#Loadings is a continuous variable
#Temperature can be a factor or continuous
#Population is a factor
aov(Loadings ~ Temperature * Population) 

A cool paper by Berger et al. 2013 has sort of done this(with out the ANCOVA). In table 3, they have gmax loadings(1st eigenvector of their G matrix) for each temperature for 3 populations: Norht, Central, South. So the Northern population exhibits warmer-cooler variation (high loadings low temps, negative loadings on high temps), whereas, Central and South exhibit vertical variation (all loadings are positive).

There is another cool paper to read about comparing G matrices by Aguirre et al. 2014.

  1. Random skewers method; simulate repsonse to selection by calculating it with randomized betas
  2. Common subspace; no clue what this is
  3. Construct a tensor; sounds like a 3D G matrix
  4. Decompose G into eigenvectors; like Kingsolver, I believe


Page 3: 2016-05-16. Complete ddRAD-seq samples: processing

ddrad-seq data are in! SHC processed short reads in STACKS and produced a fasta file.

From SHC:

*Hi Andrew, I have run all your samples against your index and through the STACKs pipeline - I used a minimum threshold of 5 reads to call a SNP, a maximum # of SNPs per tag of 6, and a minimum number of individuals that had to have a genotype call at a SNP of 10 individuals. The stats of genotype calls and heterozygosity across all your samples is in the excel spreadsheet - I highlighted those with <25% calls in yellow, and would not use those because they mess up the polarity inference for the SNPs and make the tree more ambiguous. The exception would probably be NOVCOC, since you will need an outgroup and none of the putative outgroup taxa meet the threshold. I've attached a NJ tree using all the >
25% taxa plus NOVCOC, and it seems to resolve very nicely bootstrap-wise. I do not know what many of these samples are, so no clue if it is biologically reasonable.
You'll find your fasta file in my scratch space here: Andrew_RADseq051516/final_Andrew_sam_files/m5output_refmap/Andrew_SNP_sequences_m5filter6ind10.fas Sara*

But, samples need to be redone:

*Hi Andrew, Just realized I did not adjust the barcode key for two samples in ddRAD10 that got moved during library prep – KITE5 and GF34-1. So their data are incorrect. Fixing now and should have a new version in a day or two. Sara*

So the following files should be disregarded but I'm keeping them just to log them:
In the 2014xanbe-common-garden_gxp_evolution/Data/Phylogenetics/20160516complete_dataset_phylo_analyses/

  • 20160516SHC_Andrew_final_m5filter6ind10NJtree.pdf
  • 20160516_SHC_Andrew_het-summary_SNPs.xlsx
  • 20160516SHC_Andrew_SNP_sequences_m5filter6_ind10.fas

But if you ignore KITE5 and GF34-1, here is the summary of results:

SampleSNPsHetsTotalProp.SNPsProp.het
FORMICA4711738220.000.021
PB17-10_cat20301738220.000.000
CAMPNSP584251738220.000.043
PB17-141031101738220.010.010
PB07-231921141738220.010.007
09A2587321738220.010.012
CREMATOGASTER_cat3094321738220.020.010
Kite8r3751561738220.020.015
TU64_cat5217451738220.030.009
Sal13-14r7905781738220.050.010
BK6-1107431821738220.060.017
EXIT65116121201738220.070.010
NOVCOC112013341738220.070.003
ALA4187074941738220.110.026
KITE4_cat368454941738220.210.013
AHF3r395574551738220.230.012
Duke3r533918271738220.310.015
FBR5r6162810721738220.350.017
KITE5_cat6577717451738220.380.027
KH1699519771738220.400.014
KH2r7260110211738220.420.014
BSK5r7369015731738220.420.021
FBRAGG1761948301738220.440.011
AHW77677612981738220.440.017
AHF1r7751510381738220.450.013
KH37861810991738220.450.014
Avon19-17894210011738220.450.013
Avon19-38018211371738220.460.014
MA8058415461738220.460.019
AHW28084114051738220.470.017
FBRAGG38114311031738220.470.014
AHF28204713991738220.470.017
CJ2r8238310261738220.470.012
SHC28467915411738220.490.018
CJ48482413751738220.490.016
HW108598915211738220.490.018
SHC9r8734615261738220.500.017
MIC28843511981738220.510.014
LPR49003715291738220.520.017
DUKE29131018901738220.530.021
Ala5r9152421611738220.530.024
SHC109177216141738220.530.018
CJ6r9441913861738220.540.015
CJ79500528881738220.550.030
LexSHC7r9619318101738220.550.019
YATES19627119211738220.550.020
DUKE19667517311738220.560.018
SWSR45-1r970576521738220.560.007
CJ8r9990413181738220.570.013
LexSHC8r10241419341738220.590.019
SHC510282419161738220.590.019
SHC310296918911738220.590.018
LEX91030469901738220.590.010
CJ3r10381920011738220.600.019
ALA1_cat10464424541738220.600.023
DUKE710476330811738220.600.029
DUKE510518423621738220.610.022
LPR110577714591738220.610.014
LEX1110630219991738220.610.019
DUKE610663412841738220.610.012
KH511124518991738220.640.017
Avon19-211126416671738220.640.015
Lex1r11220022151738220.650.020
AHW411246225711738220.650.023
KH711361417651738220.650.016
NewSh20-211468618431738220.660.016
KH611678819141738220.670.016
Duke9r11789413851738220.680.012
KH411816017941738220.680.015
ALA3_cat11852529651738220.680.025
CJ111973717121738220.690.014
FBR4r12205418941738220.700.016
Yates2r12208524401738220.700.020
AHW112237014231738220.700.012
YATES312418327001738220.710.022
SHC612439625771738220.720.021
Mon22-212445221481738220.720.017
NP20-312454320921738220.720.017
CJ912479525331738220.720.020
Burn21-112484620871738220.720.017
KH812566321391738220.720.017
Can21-212572721921738220.720.017
KITE112642235781738220.730.028
GB33-112766523761738220.730.019
CJ5r12771927981738220.730.022
Duke8r12822715551738220.740.012
SHC4r12858627031738220.740.021
Ted3r12929923321738220.740.018
TED4_cat13155628281738220.760.021
Unit22-113445124471738220.770.018
ALA2_cat13471437081738220.780.028
Sap13526124781738220.780.018
Pal21-313537324001738220.780.018
POP213579630301738220.780.022
Norr20-113592225021738220.780.018
FBRAGG213653436781738220.790.027
Duke4r13681230481738220.790.022
Camb31-113697924241738220.790.018
KITE213717321901738220.790.016
Hamp23-113795326391738220.790.019
LEX513985330581738220.800.022
Pop1r13991231871738220.800.023
GF34-114092840881738220.810.029
POP314093731751738220.810.023
LPR214340121901738220.820.015
SHC114537523711738220.840.016
AHW514566224071738220.840.017
Phil20-414777029151738220.850.020
AHW314823638041738220.850.026
MIC114919127371738220.860.018
LEX1314926034861738220.860.023
TED615402933471738220.890.022
PMBE_cat16373931201738220.940.019
KITE316692864371738220.960.039

Preliminary Tree; NJ:

SHC sent updated fasta file:

*Your fasta file should be ready again – turns out that GF34-1 mapped very poorly and really should not be used. The new SNP yield/heterozygosity summary file is in the same directory for you.
Sara*

Got rid of old fasta file, here is the updated file list:

  • 20160516-Andrew_SNP_sequences_m5filter6ind10_het.tsv ; summary
  • 20160516SHC_Andrew_SNP_sequences_m5filter6_ind10.fas ; unmodified names
  • 20160516Andrew_SNP_sequences.fas; relabeled to match my sampling sheet; got rid of "trimmed90_filtered"

Summary table of updated fasta file:

SampleSNPsHetsTotalProportion_loci_with_genotype
FORMICA4311740080.02
PB17-10_cat20301740080.00
CAMPNSP590231740080.04
PB17-14103491740080.01
PB07-231924141740080.01
09A2608341740080.01
CREMATOGASTER_cat3087321740080.01
Kite8r3688531740080.01
GF34-14035281740080.01
TU64_cat5180451740080.01
Sal13-14r7892781740080.01
BK6-1107231741740080.02
EXIT65115731221740080.01
NOVCOC112003341740080.00
ALA4187425001740080.03
KITE4_cat369134981740080.01
AHF3r396324581740080.01
Duke3r534588131740080.02
FBR5r6179010731740080.02
KH1700479771740080.01
KH2r7276010241740080.01
BSK5r7372815751740080.02
FBRAGG1762348321740080.01
AHW77685012781740080.02
AHF1r7752610431740080.01
KH37876711021740080.01
Avon19-1790269951740080.01
Avon19-38016011251740080.01
MA8071515361740080.02
AHW28093714021740080.02
FBRAGG38117611221740080.01
AHF28222313961740080.02
CJ2r8252810231740080.01
SHC28481115271740080.02
CJ48500313711740080.02
HW108593515121740080.02
SHC9r8751815141740080.02
MIC28854211991740080.01
LPR49015815301740080.02
DUKE29142318961740080.02
Ala5r9163221711740080.02
SHC109182615951740080.02
CJ6r9450413881740080.01
CJ79517828981740080.03
LexSHC7r9626518031740080.02
YATES19647919341740080.02
DUKE19653115701740080.02
SWSR45-1r970616541740080.01
CJ8r10005213151740080.01
LexSHC8r10255619141740080.02
SHC510297618951740080.02
LEX91030749941740080.01
SHC310307718821740080.02
CJ3r10381619631740080.02
ALA1_cat10477124331740080.02
DUKE710494030871740080.03
DUKE510531323761740080.02
LPR110584114591740080.01
LEX1110639019841740080.02
DUKE610679212911740080.01
Avon19-211126616611740080.01
KH511141019021740080.02
Lex1r11225722031740080.02
AHW411247525521740080.02
KH711376317621740080.02
NewSh20-211475318631740080.02
KH611691219171740080.02
Duke9r11797813901740080.01
KH411826317971740080.02
ALA3_cat11865330031740080.03
CJ111983717161740080.01
FBR4r12215418871740080.02
Yates2r12224124241740080.02
AHW112237014351740080.01
YATES312425226691740080.02
SHC612455625531740080.02
Mon22-212456121571740080.02
NP20-312474721051740080.02
CJ912487525081740080.02
Burn21-112493621011740080.02
Can21-212578421981740080.02
KH812579221501740080.02
KITE112663835761740080.03
GB33-112765623851740080.02
CJ5r12785127721740080.02
Duke8r12835515561740080.01
SHC4r12860426691740080.02
Ted3r12928923481740080.02
TED4_cat13175828631740080.02
Unit22-113450824721740080.02
ALA2_cat13481837291740080.03
Pal21-313539824111740080.02
Sap13541324871740080.02
POP213592830041740080.02
Norr20-113601325061740080.02
FBRAGG213662636801740080.03
Duke4r13689530351740080.02
Camb31-113707424481740080.02
KITE213732221851740080.02
Hamp23-113808826461740080.02
Pop1r13998231401740080.02
LEX513998730141740080.02
POP314103731401740080.02
LPR214343221851740080.02
SHC114554123821740080.02
AHW514576624091740080.02
Phil20-414788729251740080.02
AHW314831437961740080.03
MIC114932227621740080.02
LEX1314940134611740080.02
TED615410933621740080.02
KITE5_cat15774852461740080.03
PMBE_cat16388131111740080.02
KITE316708364411740080.04

Parsed 20160516_Andrew_SNP_sequences.fas:

  • got rid of samples with low number of SNPs

    • FORMICA
    • PB17-10
    • CAMPNSP
    • PB17-14
    • PB07-23
    • 09A
    • CREMATOGASTER
    • Kite8r
    • GF34-1

Grabbing number of samples from command line:
grep '^>' 20160516_Andrew_SNP_sequences.fas | wc -l

 107        

107 samples!

Next step is to reconstruct relationships of SNP Matrix

  1. Use CIPRES
  2. Use RAxML-HPC BlackBox (8.2.8) to reconstruct ML tree
  3. I also need to estimate the ML distance matrix with computer in ant room.

For ML distance matrix with raxml, you need a fasta file and tree. Piece of code I've tried before:

*##for anbe tree, claculate pairwise ml distance matrix nohup nice -n 19 ./raxmlHPC -f x -p 12345 -s ~/Desktop/2015ANBE_common_garden/20150818Andrew_SNP_sequences_nooutgr.fasta -m GTRGAMMA -t ~/Desktop/2015ANBE_common_garden/RAxML_bestTree.20150819commongarden_raxml_v2 -n 20150828_commongarden_pairwise_ML_distance &



Page 4: 2016-05-13. Aphaenogaster morphological IDs

For JSG phytotron project (and also partly Lchick's thermal niche paper).

IDColony.IDSpeciesVouchersBernice.morphological.IDpinnedsample.fromnotes
ApGXL-01-AMagSpr3carolinensisno specimen
ApGXL-01-BMagSpr4rudisno specimen
ApGXL-01-CMagSpr7carolinensisno specimen
ApGXL-02-AHW1rudisrudisyClint
ApGXL-02-BHW5rudisno specimen
ApGXL-02-CHW7rudisvoucherNCSUrudisyClint
ApGXL-03-AFMU4.no specimen
ApGXL-04-AUNF8rudisrudisnSara
ApGXL-04-BUNF9rudisrudisnSara
ApGXL-04-CUNF1carolinensiscarolinensisnSara
ApGXL-05-BGSMNP4piceapiceaySara
ApGXL-05-DGSMNP5piceapiceaySara
ApGXL-06-ADW2rudisrudisnClint
ApGXL-06-BDW1rudisrudisnSara
ApGXL-07-ABRP2piceavoucherNCSUpiceayClint
ApGXL-07-BBRP9piceavoucherNCSUno specimen
ApGXL-08-AIjams6rudisrudisySara
ApGXL-08-DIJams1rudisrudisnSara
ApGXL-09-ARC12rudisrudisnClint
ApGXL-10-ALVA9rudisrudisnSarathere are 2 LVA 9s, not sure which one I have
ApGXL-10-BLVA12rudisrudisnSara
ApGXL-10-CLVA11fulvafulvanSara
ApGXL-10-FLVA9rudisrudisnSarathere are 2 LVA 9s, not sure which one I have
ApGXL-11-AWP9rudisvoucherNCSUrudisyClint
ApGXL-11-BWP11rudisvoucherNCSUrudis?yClintwhere is this from? It looks dark like picea, but no lighter antennal segmants. It resembles one I described morphologically as rudis, but DNA said picea
ApGXL-11-CWP3fulvavoucherNCSUfulvayClint
ApGXL-11-DWP6rudisrudisnSara
ApGXL-12-ANOCK6picearudisnClintwhere is this from? It looks dark like picea, but no lighter antennal segmants. It resembles one I described morphologically as rudis, but DNA said picea
ApGXL-12-DNOCK8rudisrudisySarawhere is this from? It looks dark like picea, but no lighter antennal segmants. It resembles one I described morphologically as rudis, but DNA said picea
ApGXL-13-AHSP6piceapiceanSara
ApGXL-13-BHSP7piceapiceanSara
ApGXL-13-CHSP9piceavoucherNCSUpiceayClintwhere is this from? It looks dark like picea, but no lighter antennal segmants. It resembles one I described morphologically as rudis, but DNA said picea
ApGXL-13-DHSP12piceapiceaySara
ApGXL-15-ADSF4piceavoucherNCSUpiceayClint
ApGXL-15-BDSF11piceavoucherNCSUpiceayClint
ApGXL-15-CDSF8piceapiceanSara
ApGXL-15-DDSF12piceavoucherNCSUpiceayClint
APGXL-16-ABRM4piceapiceanSara
APGXL-16-BBRM/BRF8piceapiceanSara
ApGXL-17-ABard10piceavoucherNCSUpiceayClint
ApGXL-17-BBard9piceavoucherNCSUpiceayClint
ApGXL-17-CBard3piceapiceanSara
ApGXL-18-ANotch1fulvavoucherNCSUpiceaySaradiscrepancy - spines not upward
ApGXL-18-CNotch4rudispiceanSaradiscrepancy, last 4 antennal sements lighter in color)
ApGXL-18-DNotch2fulvavoucherNCSUpiceayClintdiscrepancy - spines not upward
ApGXL-19-AHF001piceapiceanSara
ApGXL-20-AAPB10piceavoucherNCSUpiceayClint
ApGXL-20-BAPB3apiceapiceanSara
ApGXL-20-CAPB3bpiceapiceanSara
ApGXL-20-DAPB8piceapiceanSara
ApGXL-21-ABear6piceapiceanSara
ApGXL-21-BBear5piceapiceanSara
ApGXL-21-CBear3piceapiceaySara
ApGXL-22-ASEB1.piceanSara
ApGXL-22-BSEB8piceapiceanSara
ApGXL-22-CSEB9piceapiceanSara
ApGXL-23-AMM1piceavoucherNCSUpiceayClint
ApGXL-23-BMM2piceapiceanSara
ApGXL-23-CMM4piceavoucherNCSUpiceayClint
ApGXL-24-AEW09piceapiceanSara
ApGXL-24-BEW4.piceanSara
ApGXL-25-ARW3piceavoucherNCSUpiceayClintlight, but last 4 antennal segments lighter
ApGXL-25-CRW1.no specimen
ApGXL-25-DRW5piceapiceanSara
ApGXL-26-AMB1piceavoucherNCSUpiceayClint
ApGXL-26-BMB3piceavoucherNCSUno specimen
ApGXL-26-CMB4piceavoucherNCSUpiceayClint
ApGXL-26-DMB2piceavoucherNCSUpiceayClint
ApGXL-26-EMB6piceavoucherNCSUpiceayClint
ApGXL-27-AKBH4bpiceavoucherNCSUpiceayClint
ApGXL-27-BKBH1piceavoucherNCSUpiceayClint
ApGXL-28-ABrad1piceapiceaySara
ApGXL-28-BBrad6piceavoucherNCSUpiceayClint
Aphaen 15Aphaen 15
Aphaen A2Aphaen A2
Aphaen12Aphaen12
Aphaen17Aphaen17
Aphaen18Aphaen18rudis
AphaenAAphaenArudisvoucherNCSU
AphaenBAphaenB
BARD11BARD11
BARD2BARD2picea
BARD5BARD5fulva
BlankBlankrudisvoucherNCSU
Brad2Brad2piceavoucherNCSU
Brad3Brad3
BRP-2BBRP-2Bpicea
BRP08BRP08
BRP1BRP1piceavoucherNCSU
BRP10BRP10
BRP11BRP11piceavoucherNCSU
BRP3BRP3piceavoucherNCSU
BRP5BRP5piceavoucherNCSU
BRP6BRP6
BRP7BRP7piceavoucherNCSU
DF-3ADF-3ArudisvoucherNCSU
DF1-ADF1-ArudisvoucherNCSU
FMU6FMU6rudisvoucherNCSU
HSP1HSP1picea
HSP4HSP4
HSP5HSP5picea
HW8HW8
HW9HW9
KBH6KBH6
KBH8KBH8piceavoucherNCSU
LVA1LVA1fulvavoucherNCSU
LVA13LVA13rudisvoucherNCSU
LVA2LVA2rudisvoucherNCSU
LVA3LVA3rudisvoucherNCSU
MAGSPR6MAGSPR6rudisvoucherNCSU
NSP2NSP2piceavoucherNCSU
NSP3NSP3rudis
NSP7NSP7fulva
OLDRC1OLDRC1fulva
OldRC3OldRC3fulva
OldRC4OldRC4rudis
OldRC6OldRC6rudis
OLDRC7OLDRC7rudis
RC02RC02fulvavoucherNCSU
RC04RC04rudis
RC06RC06rudisvoucherNCSU
RC09RC09rudisvoucherNCSU
RC10RC10rudisvoucherNCSU
RC11RC11rudis
RC13RC13rudisvoucherNCSU
RC14RC14rudis
RC15RC15rudis
RC16RC16rudis
Seb 2ASeb 2A
SEB3ASEB3A
UNF4AUNF4Arudis
UNF7AUNF7Amiamiana
YM01YM01rudis
YM02YM02rudis
YM03YM03rudis


Page 5: 2016-05-13. Sequencing qPCR amplicons; Curtis and ANBE experiments

Sample list and plate layout for sanger sequencing. Amplicons ~ 100bps and were Qiagen PCR purified following manufacturer's instructions. Added ~3 ng template,with 2 uM primer in 11.6 uL volume. Curtis' chamber samples are on here and my own ANBE gene expression experiment. Submitting to vermont cancer center.

If interested in protocols , see here.

WellTemplate.NamePrimer.Name
A1HF 5-118s_F328
B1HF 5-118s_R427
C1HF 7-118s_F328
D1HF 7-118s_R427
E1DF 13-A18s_F328
F1DF 13-A18s_R427
G1DF 14-A18s_F328
H1DF 14-A18s_R427
A2DF 8-Bhsp83_F1583
B2DF 8-Bhsp83_R1682
C2DF 5C-4hsp83_F1583
D2DF 5C-4hsp83_R1682
E2HF 8-1hsp83_F1583
F2HF 8-1hsp83_R1682
G2HF 2-2hsp83_F1583
H2HF 2-2hsp83_R1682
A3DF 1-Dhsp70_F1468
B3DF 1-Dhsp70_R1592
C3DF 10-3hsp70_F1468
D3DF 10-3hsp70_R1592
E3HF2 8-2hsp70_F1468
F3HF2 8-2hsp70_R1592
G3HF2 4-1hsp70_F1468
H3HF2 4-1hsp70_R1592
A4HF2 7-2hsp40_F541
B4HF2 7-2hsp40_R641
C4HF2 5-2hsp40_F541
D4HF2 5-2hsp40_R641
E4DF A1-Bhsp40_F541
F4DF A1-Bhsp40_R641
G4DF A8-Bhsp40_F541
H4DF A8-Bhsp40_R641
A5HF2 5-3actin_F984
B5HF2 5-3actin_R1095
C5HF2 8-1actin_F984
D5HF2 8-1actin_R1095
E5DF 3-Aactin_F984
F5DF 3-Aactin_R1095
G5DF 7-Aactin_F984
H5DF 7-Aactin_R1095
A6Exit6570_1468
B6BK70_1468
C6Ted670_1468
D6DUKE670_1468
E6ALA170_1468
F6KH270_1468
G6FB270_1468
H6Exit6570_1592
A7BK70_1592
B7Ted670_1592
C7DUKE670_1592
D7ALA170_1592
E7KH270_1592
F7FB270_1592
G7Exit6583_1583
H7BK83_1583
A8TED383_1583
B8DUKE683_1583
C8ALA183_1583
D8KH283_1583
E8FB283_1583
F8Exit6583_1682
G8BK83_1682
H8TED383_1682
A9DUKE683_1682
B9ALA183_1682
C9KH283_1682
D9FB283_1682
E9PB171083_279
F9POP283_279
G9SHC283_279
H9cremato83_279
A10ex83_279
B10bk83_279
C10TED683_279
D10PB171083_300
E10POP283_300
F10SHC283_300
G10cremato83_300
H10ex83_300
A11bk83_300
B11TED683_300
C11DUKE6hsp40_541
D11ALA1hsp40_541
E11KH2hsp40_541
F11FB2hsp40_541
G11EXhsp40_541
H11BKhsp40_541
A12Ted6hsp40_541
B12DUKE6hsp40_641
C12ALA1hsp40_641
D12KH2hsp40_641
E12FB2hsp40_641
F12EXhsp40_641
G12BKhsp40_641
H12Ted6hsp40_641


Page 6: 2016-05-17 Phylogenetics results from 2016-05-16 (CIPRES RaxML analysis)

Results from 2016-05-16 ML tree using RaxML black box on CIPRES.

Transformed branch lengths


Untransformed branch lengths


Notes: I left a pogo sample in there. LPR4 and HW5 look switched.

Summary of tree by species:

When comparing with the NJ tree, the placement of A. picea is different.

  • ML tree: A. picea is sister to A. rudis,A. miamiana, A. lamellidens
  • NJ tree: A. picea is sister to A. rudis,A. miamiana, A. lamellidens,A. ashmeadi, A. floridana

Rerunning analysis without PB07-23 to double check this sample doesnt skew ingroup relationships.



Page 7: 2016-05-17. ABI steponeplus machine maintenance.

Machine Problem: It freezes mid run without giving an error, even while operating stand alone. Sometimes when it freezes, the door wont release plate. And it also has trouble connecting to laptop even after restart.

Machine Info: ABI steponeplus

  1. serial #: 272007769
  2. ref: 4376592
  3. University #: A92219

Under contract, no cost.
Contact info:

  • Jeremy, 1-800-955-6288 option 3, then option 1
  • issue#: 405638599

They need to send to Indonesia for repair. 1 month eta.

20160519 update: tracking number for box (for us to put machine in and send to them)- 6506 8693 8148

Also:

*Hi Andrew,
You should receive a Loaner within 2-3 business days.
Thanks,
Foi Taua

Didn't know we were getting a loaner. He didn't mention cost.

20160520 update: Machine sent out



Page 8: 2016-05-18.Phylogenetic results without pogo sample

The results of phylogenetic analysis of SNP matrix from Page 3: 2016-05-16. Complete ddRAD-seq samples: processing. I excluded pogos, and it still needs further parsing.

  1. Get rid of LPR4, BSK. LPR4 is not in the right place. Also there was a labeling problem with this sample. BSK, have no clue what this sample actualyl is. It also had a labeling problem. BSK does not match any sites, but had KIte on the side. It is in the right place, but still have no clue which kite colony.
  2. Parse out bootstraps below 100
  3. Need to relabel kite samples so that they're lower case.
  4. Add in samples:
  • HW6-rudis

  • LPR4-ashmeadi

    • 09A and 10A-rudis

Getting rid of LPR4 and BSK5

 
library(ape)
x<-read.tree("20160518_ML_tree_BL_BS_RAxML.newick")
plot(x)
length(x$tip.label)
x2<-drop.tip(x,c("LPR4","BSK5"))
length(x2$tip.label)# checking length
plot(x2) # plot to see
write.tree(x2,"20160518_ML_tree_BL_BS_RAxML_parsed.newick") # new file name

Parsing out bootstraps below 100

 
x2$node.label<-as.numeric(as.character(x2$node.label))
x2$node.label
<-ifelse(x2$node.label>  
90,x2$node.label,"")
x2$node.label[1]<-""
x2$node.label

I'll hold off on adding samples to a phylogeny.

Transformed BL tree with 90 BS cutoff

Untransformed BL tree with 90 BS cutoff

Summary: Same topology without pogo sample.



Page 9: 2016-05-18. Agarose gel electrophoresis of qPCR amplicons; Curtis and ANBE samples

We wanted to check for specificity on a gel. Although, agarose gels don't completely pick up primer dimers. Even so, we acquire fluorescence at a higher temperature where those primer dimers disappear.

Sample list

LaneSectionSampleGenePrimer_pair
1TopLadder
2TopExit65hsc70-4 h21468+1592
3TopBKhsc70-4 h21468+1592
4TopTed6hsc70-4 h21468+1592
5TopDUKE6hsc70-4 h21468+1592
6TopALA1hsc70-4 h21468+1592
7TopKH2hsc70-4 h21468+1592
8TopFB2hsc70-4 h21468+1592
9TopExit65hsp831592+1682
10TopBKhsp831592+1682
11TopTED3hsp831592+1682
12TopDUKE6hsp831592+1682
13TopALA1hsp831592+1682
14TopKH2hsp831592+1682
15TopFB2hsp831592+1682
16TopPB1710hsp83279
17TopPOP2hsp83279
18TopSHC2hsp83279
19Topcrematohsp83279
20TopLadder
1BottomLadder
2Bottomexhsp83279
3Bottombkhsp83279
4BottomTED6hsp83279
5BottomDUKE6hsp40541+641
6BottomALA1hsp40541+641
7BottomKH2hsp40541+641
8BottomFB2hsp40541+641
9BottomEXhsp40541+641
10BottomBKhsp40541+641
11BottomTed6hsp40541+641
12BottomHFhsp831592+1682
13BottomHFhsp831592+1682
14BottomDFhsp831592+1682
15BottomDFhsp831592+1682
16BottomHFhsc70-4 h21468+1592
17BottomHFhsc70-4 h21468+1592
18BottomDFhsc70-4 h21468+1592
19BottomDFhsc70-4 h21468+1592
20BottomDFactin
21BottomDFactin
22BottomHFhsp40541+641
23BottomHFhsp40541+641
24BottomDFhsp40541+641
25BottomLadder

Protocol:

  1. Mixed ladder: 6.5 dye (6x) + 8 uL 100bp ladder+ 25.5 ul h20 to make 40 uL total---makes 4 lanes worth at 10 uL each lane
  2. For ANBE add 10 uL qpcr amplicon with 2 uL 6 x dye.
  3. For Curtis, add 5 uL qpcr amplicon with 1 uL 6 x dye.
  4. Electrophoresed on 1.5 % agarose gel , 125 Volts for 45 minutes.

Grayscaled whole:

Black whole:

The bottom is hard to see:

Showing pictures that focus on bottom part

Grayscaled bottom:

Black bottom:

Summary: Amplicons are specific. NO double bands.



Page 10: 2016-05-18. RaxML ML pairwise distance matrix

Code for RaxML

./raxmlHPC -f x -p 12345 -s ~/Desktop/2015ANBE_common_garden/20160516Andrew_SNP_sequences.fas -m GTRGAMMA -t ~/Desktop/2015ANBE_common_garden/20160518ML_tree_unparsed.newick -n 20150618_ML_pairwise_distance_ANBEsamples

Snippet of output:

V1V2V3
HW5ALA10.094440
HW5BK6-10.512869
HW5POP30.096510
HW5MA0.092071
HW5CJ10.277364
HW5Camb31-10.096856
HW5DUKE90.113134
HW5ALA20.098850
HW5KH40.032412
HW5Unit22-10.097533



Page 11: 2016-05-18. ABI steponeplus machine maintenance update

Update from, Page 7: 2016-05-17. ABI steponeplus machine maintenance.

*Hi Andrew,
Thank you for your recent request to have your StepOne Plus serial number 272007769 sent in to our Global Repair Center. Attached you will find the necessary paperwork to ensure that your unit is received correctly and promptly.

  1. Your RMA is 405638599
  2. Please review and complete the attached decontamination form, and print out 2 copies.
    For 9700/9800's, Please put both the TOP and BASE serial numbers on the decontamination certificate.
  3. Please DO NOT include your power cord with your instrument (remove from unit and keep it).
  4. Please DO NOT include any consumables (trays, tubes, etc.).
  5. Place a copy of the completed decontamination form INSIDE and OUTSIDE of the box.
  6. Print out the FedEx label, (link will arrive via separate email).
    Service of your instrument cannot begin without the completed decontamination form.
    Best Regards,
    Foi Taua
    Remote Service Center
    T 800 955 6288 option 3, 1 to reach Remote Service Center
    F 760 930 2300
    5791 Van Allen Way • Carlsbad • CA • 92008 • United States
    instrumentservices@lifetech.com
    www.lifetechnologies.com*

Link to pdf I had to fill out

2016-05-26 update: we received loaner.



Page 12: 2016-05-19. Getting whole rad loci with pyRAD tutorial and/or stacks

Previous analyses concatenate SNPS, but many studies use whole rad loci.

Computer cluster:
Reference for mason cluster

path of raw ddrad data

/N/dc2/scratch/scahan/Andrew_RADseq_051516/ Data/

SHC email:

*If you want to explore/analyze the RADseq data yourself:
/N/dc2/scratch/scahan/Aphaenogaster_RADfiles_051516/
You should find in each lane directory the raw .fq file from the sequencer, a barcode key file, the demultiplexed sample .fq files, and the trimming, filtering and mapping files from the pipeline. The earliest lanes (1&2) might have fewer files because the process was not yet regularized back then. The STACKs portion of the pipeline is specific to each project, so they all have their own directories in the main scratch space (e.g., Andrew_RADseq051516, Bernice051516, Phytotron_analyses_051516, etc.). All directories at this level have their date suffix modified every two weeks, so job scripts that point to a particular path have to get edited to the current date suffix. Some of the ddRAD lane directories also have a date suffix because they were secondarily moved from the main level into the Aphaenogaster directory.*

Trying pyRAD tutorial. Looks "easy".

No access to dependencies:

  1. scipy
  2. vsearch
  3. muscle

20160520 update, working on Mason compute cluster:

Hi Andrew,
First, I'd suggest you add "module load python" to your ~/.modules file, which will load the python 2.7.3 module each time you login. It's not terribly current, but it is the version under which we install python packages on Mason.
You'll find that numpy and scipy are both available there.
As for muscle and vsearch, I'll let you know when we get those packages installed.
Matt

I could use the population function/module in stacks.



Page 13: 2016-05-20. Evolution of proteome stability project

We are interested in the adaptive variation in how proteins unfold between 2 different ant species. Github repo

We isolated native proteins, subjected them to temperature treatments for 10 min. Then ultracentrifuged to pull down aggregates, then quantified. protocols here

Figure:

Function I am fitting to these points:

[Math Processing Error]

Code for curve fitting, also loading libraries

 
library(plyr)
library(ggplot2)
library(tidyr)
library(minpack.lm)
nls.fit<-function(data=data){
  y<-nlsLM(unfolding ~ min+ (1-min)/(1+exp((-slope*(Tm-T)))),data=data, 
           start=list(slope=.5,Tm=45,min=.3),
           trace=TRUE,control=nls.control(warnOnly = TRUE, tol = 1e-05, maxiter=1000))
  #return(y)
  return(summary(y)$coefficients)
  }

function to visualize curves by simply putting in paramters

 
fud<-function(T=seq(25,50,1),Tm=40,slope=.5,max=1,min=0){
  y<-min+ (max-min)/(1+exp((-slope*(Tm-T))))
  return(y)
  }

How I implemented th code:

 
mod1<-ddply(x.par,.(Species,Colony),nls.fit)
mod1$parameter<-rep(c("slope","Tm","min"),length(mod1$Species)/3)
knitr::kable(mod1)

Table summary of results from fitting curves.

SpeciesColonyEstimateStd. Errort valuePr(>|t|)parameter
A. rudisDuke 10.16062800.02064037.7822380.0000276slope
A. rudisDuke 147.29202970.945154450.0363010.0000000Tm
A. rudisDuke 10.36376200.029399012.3732850.0000006min
A. rudisLex 130.13339020.01598328.3456730.0000158slope
A. rudisLex 1349.75939291.276013738.9959720.0000000Tm
A. rudisLex 130.21612790.04517034.7847370.0009947min
A. rudisYates 20.15734660.02203297.1414300.0000542slope
A. rudisYates 247.98496481.089976144.0238700.0000000Tm
A. rudisYates 20.36378130.033677710.8018530.0000019min
P. barbatusWWRQ-450.21425670.016577412.9246250.0000004slope
P. barbatusWWRQ-4545.99879270.3837543119.8652080.0000000Tm
P. barbatusWWRQ-450.40324380.012667131.8340690.0000000min
P. barbatusWWRQ-530.18234800.017396310.4820090.0000024slope
P. barbatusWWRQ-5347.28589820.595884379.3541670.0000000Tm
P. barbatusWWRQ-530.40131220.018488621.7059270.0000000min
P. barbatusWWRQ-80.20282110.02459908.2451130.0000174slope
P. barbatusWWRQ-845.56647420.634025371.8685430.0000000Tm
P. barbatusWWRQ-80.42809160.019475621.9809210.0000000min

Only slope was significant

 
summary(aov(Estimate~Species,data=slope))
            Df   Sum Sq  Mean Sq F value Pr(>F)  
Species      1 0.003654 0.003654   15.15 0.0177 *
Residuals    4 0.000965 0.000241                 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1

Figure of unfolding if only changing slope (eye balled mean slope, so pogo = .2,rudis=.15 )



Page 14: 2016-05-24. Evolution of proteome stability project: Polyacrylamide gels for colony level replicates (A. rudis vs P. barbatus)

Amanda Meyer is working on this project:

  1. Samples stored at -80C, we took 30 uL and speed vacuumed (took 1 hr) and then resuspended in 60 uL of 1X sample buffer
  2. We took 25 uL of sample and added in 5 ul of gapdh (20ng/uL in sample buffer)
  3. Loaded on polyacryladmide and electrophoresed.

Polyacrylamide Gels:

  1. Duke1 (A. rudis)

  2. Yates2 (A. rudis)

    Note: For Yates2, the gels are reversed. (Bottom gel starts at 30C)
  3. WWRQ45 (P. barbatus)

  4. WWRQ53 (P. barbatus)

Next steps: Need to destain and trypsin digest.



Page 15: 2016-05-24. Degenerate Hsp primer design from 2015-05-28

Primer design from 2015-05-28 referenced here

nnamesequence
1hsc70-4h2_1175FTTCTGYTGGAYGTDACTCC
2hsc70-h2_1345RTCGCTCTCTCHCCYTCRTARAC
3hsc70-4h2_1468FGCGATYGARAAATCTACVGGC
4hsc7004h2_1592RTGYTCRTCYTCCGATCGGTA
5hsc70-4h1_1291FACYTAYGCCGACAATCARCC
6hsc70-4h2_1390RCGCTRAGCTCGAAYTTDCCC
7hsc70-4h1_1506FCACYATYACCAAYGACAARG
8hsc70-4h1_1605RYTCCTTCTGCTTCTCRTCCTC
9hsp40_118FGCCTTRCGATATCATCCTGA
10hsp40_248CCYTCCTCGCCRAATTTATC
11hsp40_541FAAAGATCGYGCYCARGATCC
12hsp40_641RGCYCGTCTRCATATYTTCATC
13hsp40_869FTRTGCGGTACTRTYGTCGAAG
14hsp40_968RTGGAACCTYTTGACNGTRTTC
15hsp83_278FACDATYCTTGATTCTGGYATTGG
16hsp83_392RCCAAACTGTCCAATCATGGA
17hsp83754FGATGTYGGHGAGGATGA
18hsp83_880RGATTTCTYGTCCARATCGG
19hsp83_1583FAATTCGAYGGAAARCAGYTGG
20hsp83_1682RAAYTTGGCYTTGTCYTCCTC
21hsp83_1807FATGGAGAGRATCATGAAGGC
22hsp83_1917RCARRTTCTCCATGATRGGATGATC
23nedd_510FTAATCATTCCAGTCAGCGG
24ned_614RTCAGATACGTCTCCGTTGTC
25nedd_556FTATCATGCATACATTTCCGAC
26nedd_683RATCGTAATATCTGCACTTTGYTC
27nedd_956FATGGTGAAGTTCTACGCGAG
28nedd_1088RTAAGGTAGCCACGTTGATCG
29nedd_1222FCAAGTAGCACCTAATGGTAGA
30nedd_1316RGGTATAGARCTTGGTCTTCC
31nedd_1351FGATTTAGATCAATTAGGACCDCTTC
32nedd_1460RGGATCTTCCCATTGTGTTGT
33nedd_2375FGGAGAGTCGTTTTGTCATTCAG
34nedd_2459RCCATTCATTGGAACACGTGATG

I don't use all of these anymore. But here are the ones that I've tested for specificity (from agarose gel electrophoresis , sequencing, and melt curve analysis following qPCR) and efficiency ( titrate amplicon across a dynamic range to compare slope equals -3.2).

  1. hsc70-4 h2; 1468F + 1592R
  2. hsp83; 278F+392R and 1583F + 1682 R
  3. hsp40 541F+ 641R
  4. NEDD; 956F+ 1088R (This is off the top of my head, so I need to double check this!)



Page 16: 2016-05-24](#id-section16). Sequencing analysis continued from Page 5: 2016-05-16.

Sharing screenshots of sanger sequenced samples mapped to reference transcript (P. barbatus)

  • I used the software Geneious v6 to analyze sequence data.

  • Sample structure on figure: Well_colony.id_gene_primer#

  • The pics and raw sequence data can be found: here

    • Path: /Dissertation_temperature_adaptation_ants/Dissertation_Projects/2014_xanbe-common-garden_gxp_evolution/Data/sequencing/Sanger/

1. hsc70-4 h2 1468F + 1592R

2. hsp83 278F+392R

3. hsp83 1583F + 1682 R

4. hsp40 541F+ 641R

Summary of results:
Most of samples mapped really well! Generally, the sequencing with the forward primer recovers the reverse primer, and vice versa.



Page 17: 2016-05-25. Double check samples for SHC; JSG phytotron exp and MS.

email sent 2016-05-18:

Ok – your list is missing 20-B (AP2), which is on your tree. The two samples with no morphological ID are your RW2 (25-C) and your BP2 (07-B), which will have to get omitted. The only remaining samples whose placements are problematic are your RW1, which was ID’d picea but comes out in that odd basal clade with the intermediate NK samples, and LA4, which was ID’d as rudis but falls out in the middle of picea. Looking at the latter one, however, this is the mysterious LVA9, which was written down as the source for two different experimental colonies (not possible, since they were supposed to be queenright) and there is no way to know if the sample Bernice looked at is the same as the RADseq sample or the assayed colony. So there is good reason to throw that one out as well.

Need to double check these samples.

2016-05-26 UPdate- Ecluding:

  1. 25-C / RW2
  2. 07-B / BP2
  3. 10-F / LA4



Page 18: 2016-05-31. Learning model selection and model averaging!

I'm learning model averaging!

Basically, there is uncertainty in parameter estimates of a stat model (linear regression) and we should explore how many stats model compare to each other, usually by AIC.

From Burnham and Anderson 2002
If data analysis relies on model selection, then inferences should acknowledge model selection uncertainty. If the goal is to get the best estimates of a set of parameters in common to all models (this includes prediction), model averaging is recommended. If the models have definite, and differing, interpretations as regards understanding relationships among variables, and it is such understanding that is sought, then one wants to identify the best model and make inferences based on that model. Hence, reported parameter estimates should then be from the selected model (not model averaged values). However, even when selecting a best model, also note the competing models, as ranked by their Akaike weights. Restricting detailed comparisons to the models in a 90% confidence set on models should often suffice. If a single model is not strongly supported, wmin ≥ 0.9, and competing models give alternative inferences, this should be reported. It may occur that the basic inference(s) will be the same from all good models. However, this is not always the case, and then inference based on a single best model may not be sound if support for even the best model is weak (in all-subsets selection when R > 1,000, wmin can be verysmall, e.g., < 0.01).

General Steps:

  1. Construct global model. Pick predictors you think are most important.
  2. I used MuMin package in R with the dredge() function to construct subsets of global model.
  3. Pick out top model set: subset based on.... top 2/6/10 AIC or delta 4 AIC.
  4. Average models from top set.

Picking predictors I think are important

Decomposing phylogeny with PCOA, looking at eigenvalues:

EigenvaluesRelative_eigRel_corr_eigBroken_stickCum_corr_eigCumul_br_stickrep(1:20, 1)
0.3620.5630.4070.1140.4070.1141
0.0860.1340.1020.0870.5090.2002
0.0520.0810.0650.0730.5740.2733
0.0200.0320.0300.0640.6040.3374
0.0160.0250.0250.0570.6300.3945
0.0140.0220.0230.0520.6530.4466
0.0110.0170.0200.0470.6730.4947
0.0100.0150.0180.0430.6910.5378
0.0080.0130.0170.0400.7080.5779
0.0070.0110.0160.0370.7230.61410
0.0050.0080.0130.0340.7370.64911
0.0050.0080.0130.0320.7500.68112
0.0040.0070.0130.0300.7620.71013
0.0040.0070.0120.0280.7750.73814
0.0040.0060.0120.0260.7870.76415
0.0040.0060.0120.0240.7980.78716
0.0030.0050.0110.0220.8100.81017
0.0030.0050.0110.0210.8210.83018
0.0030.0050.0110.0190.8320.84919
0.0030.0050.0110.0180.8430.86720

We have ~40 samples, so use 10:1 rule (sample: predictor). Regress first 4 Axes (60% of variation) against Ctmax.

 
Ctmax.sel<-lm(Ctmax~Axis.1+Axis.2+Axis.3+Axis.4,data=merg)
summary(Ctmax.sel)
  Estimate Std. Error t value Pr(>|t|)    
(Intercept) 42.43692    0.06339 669.409   <2e-16 ***
Axis.1      11.87677    0.65817  18.045   <2e-16 ***
Axis.2       2.87094    1.35038   2.126   0.0408 *  
Axis.3       3.72343    1.73540   2.146   0.0391 *  
Axis.4      -2.25911    2.76538  -0.817   0.4197    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3959 on 34 degrees of freedom
Multiple R-squared:  0.908, Adjusted R-squared:  0.8971 
F-statistic: 83.85 on 4 and 34 DF,  p-value: < 2.2e-16

Looksl ike first 3 axes are significant: choose these in regression models with Tmax

Check correlation between bioclim variables and phylogenetic components

Axis.1Axis.2Axis.3Axis.4bio5bio6bio7merg$nb
Axis.11.0000.0000.0000.0000.8820.745-0.454-0.258
Axis.20.0001.0000.0000.0000.1590.139-0.0890.023
Axis.30.0000.0001.0000.0000.1510.301-0.327-0.321
Axis.40.0000.0000.0001.000-0.044-0.0900.0990.072
bio50.8820.1590.151-0.0441.0000.772-0.411-0.412
bio60.7450.1390.301-0.0900.7721.000-0.897-0.728
bio7-0.454-0.089-0.3270.099-0.411-0.8971.0000.757
merg$nb-0.2580.023-0.3210.072-0.412-0.7280.7571.000

Model subsets

Construct full model to test interaction between Tma and each eigenvector(part of phylogeny

 
#Ctmax = upper thermal limit
# Axis1 - picea rudis split
# Axis2 - N-S rudis clade split
# Axis 3 - Pica split
# Rearing temp: 20(23?) and 26
#Bio 5 = Tmax
lm(Ctmax~bio5*Axis.1+bio5*Axis.2+bio5*Axis.3+Rearing.temp,data=merg) 

Showing table of model subsets generated from dredge() function

(Intercept)Axis.1Axis.2Axis.3bio5Rearing.tempAxis.1:bio5Axis.2:bio5Axis.3:bio5dflogLikAICcdeltaweight
11238.89633-64.54042163.379439-7.13441450.1142023NA2.536627-5.254042NA8-7.24054335.281090.0000000.4265037
4240.27150-32.80201NANA0.0688105NA1.425184NANA5-13.00329837.824782.5436910.1195549
12838.47028-66.64409164.835542-7.46606120.12136950.00958242.601996-5.309316NA9-7.07099738.348893.0678050.0919936
24038.99929-63.44634165.175057-17.13486400.1105860NA2.500507-5.3002060.37040689-7.23087738.668653.3875650.0784011
4439.58611-45.63541-2.113326NA0.0908785NA1.833044NANA6-12.19796739.020933.7398470.0657393
10840.67312-34.0796568.733204NA0.0549570NA1.516668-2.192978NA7-10.72547439.063853.7827650.0643437
4640.41404-31.25480NA0.53033590.0639742NA1.377435NANA6-12.95531040.535625.2545340.0308259
5840.27478-32.80931NANA0.0687900-0.00012191.425440NANA6-13.00327540.631555.3504650.0293822
4839.02228-53.61002-2.839872-1.22114350.1096013NA2.083210NANA7-12.02959241.672096.3910010.0174636
6039.47928-45.71692-2.160369NA0.09194120.00340851.834965NANA7-12.18030241.973516.6924230.0150204
25638.58207-65.43836166.850595-18.63128060.11738560.00965302.562160-5.3612530.413458210-7.05885741.974866.6937720.0150103
12440.68974-34.0463868.875613NA0.0547434-0.00046361.515799-2.197188NA8-10.72512742.250256.9691680.0130794
17440.17971-36.89376NA-39.01611700.0707023NA1.545609NA1.44244287-12.64790242.908717.6276220.0094104
6240.43434-31.27748NA0.53675750.0637997-0.00069141.378308NANA7-12.95460243.522118.2410210.0069248
17638.62972-58.09940-4.10407236.30659610.1233954NA2.234488NA-1.39724988-11.91704144.634089.3529960.0039714
6438.74224-54.92127-3.032774-1.39879990.11429520.00631822.123167NANA8-11.97189244.743789.4626990.0037594
7642.0776713.63416119.882620NA0.0151404NANA-3.677760NA6-15.14817944.921369.6402730.0034400
842.4369211.876772.8709413.7234291NANANANANA5-16.90500345.6281910.3471020.0024159
19040.09493-37.03074NA-40.59282120.07161610.00257401.548960NA1.49908058-12.63841146.0768210.7957360.0019305
642.4369211.87677NA3.7234291NANANANANA4-19.29482447.7661212.4850330.0008295

Cumulative AIC weights

2016-06-01 continued : Actually model averaging

top 2 AIC

 
>summary(model.avg(a.max[1:2]))
Full model-averaged coefficients (with shrinkage): 
             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)  39.19741    1.81718     1.88065  20.842  < 2e-16 ***
Axis.1      -57.59157   22.32729    22.90080   2.515  0.01191 *  
Axis.2      127.60890   83.60797    84.76171   1.506  0.13220    
Axis.3       -5.57240    3.87984     3.94483   1.413  0.15778    
bio5          0.10426    0.06385     0.06611   1.577  0.11477    
Axis.1:bio5   2.29329    0.74450     0.76259   3.007  0.00264 ** 
Axis.2:bio5  -4.10371    2.67227     2.70829   1.515  0.12971    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Relative variable importance: 
                     Axis.1 bio5 Axis.1:bio5 Axis.2 Axis.3 Axis.2:bio5
Importance:          1.00   1.00 1.00        0.78   0.78   0.78       
N containing models:    2      2    2           1      1      1    

top 6 AIC

 
>summary(model.avg(a.max[1:6]))
Full model-averaged coefficients (with shrinkage): 
               Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   39.242396   1.895875    1.960765  20.014  < 2e-16 ***
Axis.1       -56.401968  22.642086   23.231252   2.428  0.01519 *  
Axis.2       120.584643  84.389355   85.517189   1.410  0.15852    
Axis.3        -5.992746  25.128163   26.111410   0.230  0.81848    
bio5           0.101921   0.065747    0.068039   1.498  0.13414    
Axis.1:bio5    2.251255   0.751716    0.770321   2.922  0.00347 ** 
Axis.2:bio5   -3.881627   2.688644    2.723787   1.425  0.15413    
Rearing.temp   0.001041   0.006764    0.006986   0.149  0.88151    
Axis.3:bio5    0.034305   0.915567    0.952226   0.036  0.97126    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Relative variable importance: 
                     Axis.1 bio5 Axis.1:bio5 Axis.2 Axis.2:bio5 Axis.3
Importance:          1.00   1.00 1.00        0.86   0.78        0.71  
N containing models:    6      6    6           5      4           3  
                     Rearing.temp Axis.3:bio5
Importance:          0.11         0.09       
N containing models:    1            1       

top 10 AIC

 
>summary(model.avg(a.max[1:10])) 
Full model-averaged coefficients (with shrinkage): 
               Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   3.931e+01  1.901e+00   1.965e+00  20.004  < 2e-16 ***
Axis.1       -5.462e+01  2.281e+01   2.337e+01   2.337  0.01945 *  
Axis.2        1.086e+02  8.793e+01   8.891e+01   1.221  0.22190    
Axis.3       -5.407e+00  2.393e+01   2.486e+01   0.218  0.82782    
bio5          9.962e-02  6.590e-02   6.817e-02   1.461  0.14391    
Axis.1:bio5   2.187e+00  7.598e-01   7.775e-01   2.813  0.00491 ** 
Axis.2:bio5  -3.499e+00  2.803e+00   2.833e+00   1.235  0.21689    
Rearing.temp  9.893e-04  7.724e-03   7.987e-03   0.124  0.90143    
Axis.3:bio5   3.092e-02  8.693e-01   9.041e-01   0.034  0.97272    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Relative variable importance: 
                     Axis.1 bio5 Axis.1:bio5 Axis.2 Axis.2:bio5 Axis.3
Importance:          1.00   1.00 1.00        0.81   0.70        0.69  
N containing models:   10     10   10           7      4           5  
                     Rearing.temp Axis.3:bio5
Importance:          0.15         0.08       
N containing models:    3            1     

top 4 delta AIC

 
>summary(model.avg(a.max, subset = delta < 4))
Full model-averaged coefficients (with shrinkage): 
               Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   39.242396   1.895875    1.960765  20.014  < 2e-16 ***
Axis.1       -56.401968  22.642086   23.231252   2.428  0.01519 *  
Axis.2       120.584643  84.389355   85.517189   1.410  0.15852    
Axis.3        -5.992746  25.128163   26.111410   0.230  0.81848    
bio5           0.101921   0.065747    0.068039   1.498  0.13414    
Axis.1:bio5    2.251255   0.751716    0.770321   2.922  0.00347 ** 
Axis.2:bio5   -3.881627   2.688644    2.723787   1.425  0.15413    
Rearing.temp   0.001041   0.006764    0.006986   0.149  0.88151    
Axis.3:bio5    0.034305   0.915567    0.952226   0.036  0.97126    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Relative variable importance: 
                     Axis.1 bio5 Axis.1:bio5 Axis.2 Axis.2:bio5 Axis.3
Importance:          1.00   1.00 1.00        0.86   0.78        0.71  
N containing models:    6      6    6           5      4           3  
                     Rearing.temp Axis.3:bio5
Importance:          0.11         0.09       
N containing models:    1            1       

Comparing output to stepwise AIC both directions

 
> summary(stepAIC(full.max,direction="both"))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  38.89633    1.77085  21.965  < 2e-16 ***
bio5          0.11420    0.06223   1.835 0.075805 .  
Axis.1      -64.54042   19.60370  -3.292 0.002429 ** 
Axis.2      163.37944   55.72789   2.932 0.006179 ** 
Axis.3       -7.13441    2.85109  -2.502 0.017640 *  
bio5:Axis.1   2.53663    0.63426   3.999 0.000351 ***
bio5:Axis.2  -5.25404    1.76036  -2.985 0.005402 ** 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3216 on 32 degrees of freedom
Multiple R-squared:  0.9428,    Adjusted R-squared:  0.9321 
F-statistic: 87.96 on 6 and 32 DF,  p-value: < 2.2e-16


SHC suggestion: Just include all phylo axes in all analyses

 
full.max<-lm(Ctmax~bio5*Axis.1+bio5*Axis.2+bio5*Axis.3+bio5*Axis.4+Rearing.temp,data=merg)

Showing top 2 AIC

 
summary(model.avg(a.max[1:2]))
Full model-averaged coefficients (with shrinkage): 
             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)  39.19741    1.81718     1.88065  20.842  < 2e-16 ***
Axis.1      -57.59157   22.32729    22.90080   2.515  0.01191 *  
Axis.2      127.60890   83.60797    84.76171   1.506  0.13220    
Axis.3       -5.57240    3.87984     3.94483   1.413  0.15778    
bio5          0.10426    0.06385     0.06611   1.577  0.11477    
Axis.1:bio5   2.29329    0.74450     0.76259   3.007  0.00264 ** 
Axis.2:bio5  -4.10371    2.67227     2.70829   1.515  0.12971    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Relative variable importance: 
                     Axis.1 bio5 Axis.1:bio5 Axis.2 Axis.3 Axis.2:bio5
Importance:          1.00   1.00 1.00        0.78   0.78   0.78       
N containing models:    2      2    2           1      1      1    

Showing stepwise variable selection

 
> summary(stepAIC(full.max,direction="both"))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  38.89633    1.77085  21.965  < 2e-16 ***
bio5          0.11420    0.06223   1.835 0.075805 .  
Axis.1      -64.54042   19.60370  -3.292 0.002429 ** 
Axis.2      163.37944   55.72789   2.932 0.006179 ** 
Axis.3       -7.13441    2.85109  -2.502 0.017640 *  
bio5:Axis.1   2.53663    0.63426   3.999 0.000351 ***
bio5:Axis.2  -5.25404    1.76036  -2.985 0.005402 ** 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3216 on 32 degrees of freedom
Multiple R-squared:  0.9428,    Adjusted R-squared:  0.9321 
F-statistic: 87.96 on 6 and 32 DF,  p-value: < 2.2e-16

2016-06-02 update:

full mod construction for all traits

 
#Ctmax
full.max<-lm(Ctmax~bio5*Axis.1+bio5*Axis.2+bio5*Axis.3+bio5*Axis.4+Rearing.temp,data=merg)
#Ctmin
full.min<-lm(Ctmin~bio6*Axis.1+bio6*Axis.2+bio6*Axis.3+bio6*Axis.4+Rearing.temp,data=merg)
#thermal tolerance breadth
TNB.full<-lm(nb~Axis.1*bio7+Axis.2*bio7+Axis.3*bio7+Axis.4*bio7+Rearing.temp,data=merg)

Probably a poor way to show output, but you can see the consistency with model averaging at different criteria for selecting top model (Top 2/6/10 AIC, < delta 4, 95 conf int):

full table

CtmaxXX.1X.2X.3X.4X.5CtminX.6X.7X.8X.9X.10X.11TNBX.12X.13X.14X.15X.16
top 2 AICcNAtop 2 AICcNAtop 2 AICc
Estimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)
(Intercept)39.19741131.817175551.8806514620.8424640NA(Intercept)6.70811820.22769480.2354288428.49318760NA(Intercept)27.04593631.90592411.9684806813.73949790
Axis.1-57.591566922.3272893122.900799182.5148280.01190905NAAxis.2-2.19289222.37763642.414352040.90827360.3637337NAbio70.34587020.051075190.052751186.55663380
Axis.2127.608901583.6079687184.761712961.5055020.13219514NAbio60.43812190.02164510.0223784719.57782890NAAxis.10.47998951.209942691.237172960.38797280.6980362
Axis.3-5.57239523.879844393.944825071.4125840.1577782NANA
bio50.10426420.063854640.066111081.5771060.11477121NANA
Axis.1:bio52.29328570.744503010.762593173.007220.00263649NANA
Axis.2:bio5-4.10371422.672266252.708291151.5152410.12971134NANA
NANA
top 6 AICcNAtop 6 AICNAtop 6 AIC
Estimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)
(Intercept)39.097708331.8586772541.92574992920.302588480NA(Intercept)6.6849882970.348109130.3595559218.592346640NA(Intercept)27.100299791.931259231.994700813.586147730
Axis.1-58.8992107822.0427146222.672582082.597816630.0093819NAAxis.2-2.3950056152.3836522.425481510.987435110.3234294NAbio70.3405568950.050666790.052348426.5055806240
Axis.2128.551646384.0995735985.292606271.507183940.1317635NAbio60.4346215220.025802080.0266097416.333172690NAAxis.10.2339291720.878089670.896391220.260967720.7941174
Axis.3-6.55705631124.8676194325.845123030.253705750.7997229NAAxis.10.2379027920.840283270.861120140.276271310.7823397NARearing.temp0.0063360150.024800040.025332320.2501158740.8024977
bio50.1067609570.0645931010.0669550141.594517730.1108201NAAxis.40.1125682031.359950561.405626570.0800840.9361704NAAxis.20.3847779781.539208011.572743440.2446540030.8067243
Axis.1:bio52.3350120450.7327429880.7526585923.102352210.0019199NARearing.temp-0.0004552030.010265430.010626110.042838130.9658306NAAxis.3-0.4059581081.891991471.937499090.2095268640.834037
Axis.2:bio5-4.1391889422.6786081242.7159029171.52405630.1274946NANAAxis.4-0.0202030782.081899892.154206390.0093784320.9925172
Rearing.temp0.0010232020.0067064390.0069264720.147723340.8825611NANA
Axis.40.0404150140.7309628990.7597533980.053194910.9575766NANA
Axis.3:bio50.0337078970.9075764140.9439146210.035710750.971513NANA
NANA
top10 AICcNAtop 10 AICNAtop 10 AIC
Estimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)
(Intercept)3.93E+011.8997917361.96391103920.016933320NA(Intercept)6.7084010680.379354740.3916521617.12846710NA(Intercept)26.995669181.974381062.0389062713.24026980
Axis.1-5.49E+0122.9879818623.547810042.330392650.0197854NAAxis.2-2.3062374632.419910772.461931390.9367594370.3488823NAbio70.3413490780.051675760.053377016.39505760
Axis.21.13E+0287.1801142688.207943991.280663630.2003118NAbio60.4345283450.02604780.026866216.173791770NAAxis.10.3332192771.034922881.05760990.31506820.7527099
Axis.3-5.52E+0022.9884590323.882324840.231330930.8170577NAAxis.10.1349179120.913886350.938079430.1438235480.8856398NARearing.temp0.0093513720.02977770.030434340.30726390.7586425
bio59.98E-020.065950760.0682216771.462654730.1435619NAAxis.40.0840088341.175857961.215283530.0691269420.9448886NAAxis.20.4495528641.653848411.690156060.2659830.7902523
Axis.1:bio52.20E+000.7662786940.7839130182.803832210.0050499NARearing.temp-0.0011595310.012286460.012685730.0914043730.9271713NAAxis.3-0.5130635772.102202922.151276730.23849260.8114991
Axis.2:bio5-3.64E+002.7821297112.814132181.292064270.1963349NAAxis.3-0.0184000920.736555740.762704520.0241247970.9807531NAAxis.4-32.1405597171.6554339174.01442580.18470050.8534639
Rearing.temp8.61E-040.0070162520.0072522240.11873580.9054847NAAxis.2:bio6-0.0012874450.194077220.201018980.0064045940.9948899NAAxis.4:bio70.9855504035.266535.338911530.18459760.8535446
Axis.4-5.58E-030.8436727670.8740074930.006385670.994905NAAxis.1:bio6-0.025983360.132933130.134651740.1929671330.8469847NA
Axis.3:bio52.85E-020.8343718420.8677720280.032823590.9738153NANA
NANA
delta 4NAdelta 4NAdelta 4
Estimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)
(Intercept)3.92E+011.8939769341.95953539120.008412350NA(Intercept)6.7058139710.368599220.3805754717.620195060NA(Intercept)26.993629541.983194362.0485475613.17696010
Axis.1-5.72E+0122.6047701623.209005832.463456240.0137605NAAxis.2-2.0927147992.400132542.438602380.858161550.3908033NAbio70.3414105660.051850960.053573866.37270770
Axis.21.24E+0283.3521002184.534498391.47152410.1411494NAbio60.4345928640.025749570.026564716.359788560NAAxis.10.3322144711.037342151.060505090.31326060.7540827
Axis.3-6.10E+0024.0458534424.986595360.244185820.8070869NAAxis.10.1224265560.871430860.894454170.1368729230.8911312NARearing.temp0.0093465930.029907640.030584370.30560030.759909
bio51.03E-010.0657476630.0680628981.515669050.1296031NAAxis.40.1254150281.47354811.522743660.0823612220.9343595NAAxis.22.83802958617.7319622918.107667810.15673080.875457
Axis.1:bio52.28E+000.7496218920.7687228682.963540090.0030412NARearing.temp-0.0010521760.01170870.012088890.0870366330.9306424NAAxis.3-0.6292858352.341422782.399583680.26224790.7931303
Axis.2:bio5-4.00E+002.6552538342.6921344671.487272150.1369429NAAxis.3-0.0186743820.925719710.958290770.0194871770.9844525NAAxis.4-27.62992928159.5462112161.72812840.17084180.8643481
Rearing.temp9.52E-040.0064744410.0066865240.142389960.886772NAAxis.2:bio6-0.0011682470.184875110.191487710.0061008980.9951322NAAxis.4:bio70.8472375164.894995754.961944240.17074710.8644226
Axis.43.76E-020.7051812740.7329505210.051308190.9590799NAAxis.1:bio6-0.0235776940.126853660.128487920.1835012490.8544047NAAxis.2:bio7-0.0645766450.514939770.526153530.12273350.9023182
Axis.3:bio53.14E-020.8755144640.9105656570.034446020.9725215NANA
NANA
95 conf intNA95 conf intNA95 conf int
Estimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)NAEstimatest SEAdjusted SEz valuePr(>|z|)
(Intercept)39.345032491.925652281.9905036519.766370440NA(Intercept)6.7002875770.445639730.4603528914.554677010NA(Intercept)26.91400262.161901812.2323716112.056237620
Axis.1-54.0630588223.247338623.811499712.270460050.0231797NAAxis.2-2.0822925532.575431662.621190650.794407130.4269585NAbio70.341777990.056532270.058389795.853386470
Axis.2105.873062988.4564847289.422031441.183970670.2364247NAbio60.4307276980.030527310.0314378513.700928540NAAxis.11.5779490511.8965028912.186472110.129483660.896975
Axis.3-5.43238241226.5215313127.545900240.197212010.8436616NAAxis.10.222675371.259187111.29348620.172151330.8633186NARearing.temp0.011745950.033430280.034226270.343185370.731459
bio50.0985055270.0666653520.0689576481.428493140.15315NAAxis.40.1713622272.276291142.351910080.072860880.9419168NAAxis.24.2470893726.4680490527.176702870.156276840.8758148
Axis.1:bio52.1677612350.7744520890.792216532.736324170.006213NARearing.temp-0.0019719280.015424660.015933320.123761280.9015043NAAxis.32.5502355539.5037910440.449356190.063047620.9497286
Axis.2:bio5-3.4107867732.8209165632.8509661.196361790.2315554NAAxis.30.3448671525.820396565.96657530.057799850.9539081NAAxis.4-43.46029486204.0829434207.35992390.209588690.8339887
Rearing.temp0.0010156740.0081669260.0084507160.120187970.9043342NAAxis.2:bio6-0.0283824060.366671780.378056710.075074470.9401555NAAxis.4:bio71.329788856.259503796.360072720.209083910.8343827
Axis.42.17878748541.7921728643.107704620.050542880.9596898NAAxis.1:bio6-0.0545798210.216316070.219656690.248477850.8037647NAAxis.2:bio7-0.100084240.77569890.796851770.125599570.9000489
Axis.3:bio50.0371617540.9683213511.0065214720.036920970.970548NAAxis.3:bio60.0164665320.417556840.427961080.03847670.9693076NAAxis.1:bio7-0.033819280.346945920.355516480.095127170.9242138
Axis.4:bio5-0.066847841.2590953321.2987860730.051469480.9589514NAAxis.4:bio60.0704841761.618202441.660390210.042450370.9661397NAAxis.3:bio7-0.086116580.981984281.005277540.085664480.9317331


Page 19: 2016-06-01 Variance partitioning: thermal tolerance breadth example

Partitioning variation into phylogenetic (Axes 1-4), ecological (Tmax or Tmin or TAR), and phylogenetic + ecological components using the varpart() function in the vegan R package:

  • a+b= phylo
  • b= shared
  • c+b= ecological
  • a = phylo independent of ecology
  • c = ecology independent of phylo code for model construction:
 
#Ctmax
#varpar
full<-varpart(merg$Ctmax,~Axis.1+Axis.2+Axis.3+Axis.4,~bio5,data=merg)
full

output

 
Partition table:
                     Df R.squared Adj.R.squared Testable
[a+b] = X1            4   0.90796       0.89713     TRUE
[b+c] = X2            1   0.75637       0.74979     TRUE
[a+b+c] = X1+X2       5   0.90814       0.89422     TRUE
Individual fractions                                    
[a] = X1|X2           4                 0.14444     TRUE
[b]                   0                 0.75270    FALSE
[c] = X2|X1           1                -0.00291     TRUE
[d] = Residuals                         0.10578    FALSE
---
Use function 'rda' to test significance of fractions of interest

Looking at plots

 
plot(full)

 
#global model: a+b+c
anova(rda(merg$Ctmax~Axis.1+Axis.2+Axis.3+Axis.4+bio5,data=merg))
#fraction a+b
ab<-rda(merg$Ctmax~Axis.1+Axis.2+Axis.3+Axis.4,data=merg)
anova(ab)
#frac b+c
bc<-rda(merg$Ctmax~bio5,data=merg)
anova(bc)
#fraction a (phylo)
a<-rda(merg$Ctmax~Axis.1+Axis.2+Axis.3+Axis.4+Condition(bio5),data=merg)
anova(a)
#fraction c (eco)
c<-rda(merg$Ctmax~Condition(Axis.1+Axis.2+Axis.3+Axis.4)+bio5,data=merg)
anova(c)

Only showing code for CTmax I also applied variance paritioning for Ctmin and thermal tolerance breadth


Summary of results: Proportion of variance assigned to each component

Please scroll right to see the whole table, this table is wide

TraitIndependent.PhylogenyIndependent.EcologyPhylogenyEcologyPhylogeny.and.EcologyFullResidual
Ctmax0.1400.900.750.750.900.10
Ctmin00.310.640.920.600.910.09
Tolerance Breadth00.450.170.570.110.530.47

Note-Bolded values represents significant variance component. The combined phylogeny and ecology variance component can not be tested for significance, only indirectly measured. The ecological component is represented by Tmax for Ctmax, Tmin for CTmin, and TAR for tolerance breadth.

Different way to represent proportion of variance explained by each component

CTmax


CTmin



Notes from climate cascade meeting, 2016-06-01

I have meetings with SHC and NJG every week, so I'll start logging our discussions here

We talked about the analysis from the thermal niche paper:

  1. NJG and SHC don't have strong feelings about model averaging.
  2. FOr the 4 panel field vs phytotron CTmax and Ctmin figure, keep separate lines for each species
  3. For thermal tolerance breadth, make 1 line
  4. Include variance partitioning analysis: Estimate amount of variance that go into phylogenetic components, ecological component, and their shared component.
  5. For CTmax , perform a Levine's test on the raw residuals from the regression line for picea (field vs phytotron).
  6. NJG: What does the literature say? Do people compare field vs common garden often? Do people assay thermal tolerance in the field alone?

Writing this up SHC suggestion for results: Talk about field, then phyto, then present thermal tolerance breadth for phytotron.

For the phytroton gxp paper:

  1. Remake boxplot to include Axis 2


Page 21: 2016-06-02. Levine's test for raw residuals

We(SHC) suspect that the variance in field samples (for CTmax) is larger than the ones in the phytotron for A. picea.

In this fig, just look at the blue line. Left is field, right panel is phyto.

There is a cline in the field samples, but the cline goes away when comparing similar Tmax range as phyto:
This is a re-analysis for the field samples

TO test differences in variances, we'll performa Levine's test on the raw residuals.
About the test: some background
**Using the car package in R

Raw residuals in long format

Raw ResidualsField_V_phyto
1.2426873field
1.0498107field
0.1956326field
-0.8463195field
1.4852558field
-0.2966277field
0.7426873field
0.8078586field
0.6459408field
-0.8070045field
-0.2070045field
-0.6070045field
-0.2070045field
-0.1799154field
-1.1114907field
-0.8269702field
-1.0805318field
-0.1320043phyto
-0.4520043phyto
0.0980829phyto
0.0980829phyto
-0.1842485phyto
0.0157515phyto
-0.2211002phyto
-0.3411002phyto
-0.2292049phyto
-0.3492049phyto
-0.3492049phyto
-0.1640741phyto
-0.1040741phyto
-0.2040741phyto
-0.0640741phyto
-0.0720043phyto
0.1879957phyto
0.4388998phyto
0.0388998phyto
0.2988998phyto
0.2388998phyto
0.2739434phyto
0.4939434phyto
0.5959259phyto
0.5559259phyto
0.3679957phyto
0.6329521phyto
0.0070044phyto
-0.5389433phyto
-0.5789433phyto
-0.3589433phyto

Code:

 
library(car)
#levene's test
leveneTest(lt[,1],lt[,2])
Levene's Test for Homogeneity of Variance (center = median)
      Df F value    Pr(>F)    
group  1  16.299 0.0002028 ***
      46                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#visualizing
boxplot(lt[,1]~lt[,2],ylab="raw residuals",las=1)


Summary: Yes, sig diff in variance between field and phyto.



Page 22: 2016-06-02. Brute force fitting nls() functions in R!!

I googled how to fit nls even when failing to converge in R and found this gem.

Basically, use nls2() to brute force fit curves. I have not tried it, but putting it here as a ref.


Page 23: 2016-06-02. Literature reference for thermal niche paper to help write manuscript

Probably not comprehensive, but here it is:
Thermal breadth = 1 if they analyze it, 0 if they don't.

Table:

TypeAuthorYearJournalTaxaRearing_acclimation.TemperatureHeat_tolerance_TraitCold_tolerance_traitThermal_BreadthLocale
Meta-analysisAddo-Bediako et al.2000Proceedings of the royal society bInsectsNAGlobal
Lab acclimationDeere & Chown2006American NaturalistMites1; 5; 10; 15LocomotionLocomotion1Southern Ocean
FieldCompton et al.2007Experimental marine biology and ecologyBivalveCtmaxCtmin1Europe
Lab acclimationCalosi et al.2008Biology lettersBeetles14.5;20.5CtmaxCtmin0Europe
Lab acclimationCalosi et al.2008Journal of biogeographyBeetles14.5; 20.5CtmaxCtmin1Africa to Europe
FieldSinervo et al.2010ScienceLizardsTb0Mexico
Lab acclimationCalosi et al.2010Journal of Animal EcologyBeetles14.5; 20.5CtmaxCtmin1USA
Lab acclimationAnert et al.2011Integrative and Comparative BiologyPlants20-24RGRRGR1USA
Meta-analysisSunday et al.2011Proceedings of the royal society bTerrestrial and MarineCtmaxCtmin1Global
Common gardenOvergaard et al.2011American NaturalistFruit Fly25;29Ctmax;KOCtmin;KO1Australia
Common gardenKrenek et al.2012PlosoneParamecium22GRGR1Europe
Meta-analysisGrigg & Buckley2012Biology lettersLizardsCtmaxCtmin1Global
Short acclimationSheldon & Tewksbury2014EcologyBeetles20CtmaxCtmin1North and Central America
Common gardenSheth & Angert2014EvolutionPlants20-25RGRRGR1North America
Meta-analysisKhaliq et al.2014Proceedings of the royal society bBirds and MammalCtmaxCtmin1Global
Short acclimationSheldon et al.2015Global Ecology and BiogeographyLizards29CtmaxCtmin1Argentina
Lab acclimationBonino et al.2015ZoologyLizards20-40CtmaxCtmin1Argentina
Velasco et al.2016Journal of biogeographyNACentral America
Meta-analysisLancaster2016Nature Climate ChangeInsectsCtmaxCtmin1Global
Lab acclimationGutierrez-Pesquera et al.2016Journal of biogeographyFrogs (tadpoles)20CtmaxCtmin1Global



Page 24: 2016-06-03. Proteome stability project: Organizational entry

Today is Amanda's last day, so sad. She was working on the proteome stability project. Here I'll log all the organizational info that I'll need in the future:

  1. Where are the samples stored: Amanda and I both transferred the gel pieces, native and total protein boxes per colony to the -80C downstairs.

  1. For the TMT labeling, what order will they be labeled? See table below
  2. What else needs to be done? Wai and Bethany will resuspend our tryptic peptides, take some out and run some of the samples on LTQ to see if we have peptides. If we have peptides, then Wai will do the labeling for us! Wow!

Organization table: 3 pogo and 3 rudis colonies treated across 10 temperatures, that will be TMT labelled. LTQ run means that a subsample will be taken out to run on mass spec to check for peptides. ug of sample indicates how much protein we have.

SpeciesReplicateColonyTemperatureSample..Sample.LabelTMT.LabelLTQ...assignmentLTQ.Runug.of.Sample
P. barbatus1WWR4530.12P45-21261Yes7.28
P. barbatus1WWR4536.03P45-3127N2Yes7.21
P. barbatus1WWR4541.24P45-4127C36.23
P. barbatus1WWR4543.95P45-5128N45.95
P. barbatus1WWR4546.36P45-6128C55.41
P. barbatus1WWR4548.27P45-7129N6Yes4.59
P. barbatus1WWR4550.38P45-8129C74.43
P. barbatus1WWR4555.19P45-9130N83.63
P. barbatus1WWR4561.210P45-10130C9Yes3.03
P. barbatus1WWR4565.211P45-11131103.08
A. rudis1Duke 130.12ARD1-2126116.69
A. rudis1Duke 136.03ARD1-3127N12Yes6.00
A. rudis1Duke 141.24ARD1-4127C135.85
A. rudis1Duke 143.95ARD1-5128N14Yes5.44
A. rudis1Duke 146.36ARD1-6128C154.86
A. rudis1Duke 148.27ARD1-7129N164.50
A. rudis1Duke 150.38ARD1-8129C17Yes3.79
A. rudis1Duke 155.19ARD1-9130N18Yes3.65
A. rudis1Duke 161.210ARD1-10130C193.13
A. rudis1Duke 165.211ARD1-11131202.66
P. barbatus2WWRQ5330.12P53-2126216.54
P. barbatus2WWRQ5336.03P53-3127N226.21
P. barbatus2WWRQ5341.24P53-4127C23Yes5.82
P. barbatus2WWRQ5343.95P53-5128N245.26
P. barbatus2WWRQ5346.36P53-6128C254.82
P. barbatus2WWRQ5348.27P53-7129N264.51
P. barbatus2WWRQ5350.38P53-8129C27Yes4.02
P. barbatus2WWRQ5355.19P53-9130N283.64
P. barbatus2WWRQ5361.210P53-10130C292.81
P. barbatus2WWRQ5365.211P53-11131302.79
A. rudis2Yates 230.12ARY2-2126316.10
A. rudis2Yates 236.03ARY2-3127N32Yes6.52
A. rudis2Yates 241.24ARY2-4127C335.95
A. rudis2Yates 243.95ARY2-5128N345.26
A. rudis2Yates 246.36ARY2-6128C354.74
A. rudis2Yates 248.27ARY2-7129N36Yes4.49
A. rudis2Yates 250.38ARY2-8129C374.30
A. rudis2Yates 255.19ARY2-9130N383.57
A. rudis2Yates 261.210ARY2-10130C393.01
A. rudis2Yates 265.211ARY2-1113140Yes2.83
P. barbatus3WWRQ830.12P8-2126417.52
P. barbatus3WWRQ836.03P8-3127N427.28
P. barbatus3WWRQ841.24P8-4127C436.57
P. barbatus3WWRQ843.95P8-5128N445.79
P. barbatus3WWRQ846.36P8-6128C45Yes5.33
P. barbatus3WWRQ848.27P8-7129N46Yes4.87
P. barbatus3WWRQ850.38P8-8129C47Yes4.52
P. barbatus3WWRQ855.19P8-9130N483.88
P. barbatus3WWRQ861.210P8-10130C493.46
P. barbatus3WWRQ865.211P8-1113150Yes3.31
A. rudis3Lex 1330.12ARL13-2126516.26
A. rudis3Lex 1336.03ARL13-3127N525.90
A. rudis3Lex 1341.24ARL13-4127C53Yes5.58
A. rudis3Lex 1343.95ARL13-5128N545.01
A. rudis3Lex 1346.36ARL13-6128C554.51
A. rudis3Lex 1348.27ARL13-7129N56Yes3.95
A. rudis3Lex 1350.38ARL13-8129C57Yes3.83
A. rudis3Lex 1355.19ARL13-9130N583.41
A. rudis3Lex 1361.210ARL13-10130C592.62
A. rudis3Lex 1365.211ARL13-11131601.79

A note: showing actual temperature treatments from thermal cycler

Thermocylcer.Actual.TempTemperature
25.025
30.130
36.035
41.240
43.943
46.345
48.248
50.350
55.155
61.260
65.265
70.170


Page 25: 2016-06-03. ggplot reference, updating a figure from Page 20: 2016-06-02

For JSG gxp ms that SHC is writing. Adding axis 2 into boxplot for hsp40 basal xp.

code for manipulating data so that I convert different axes into factors! There is probably a better way of doing this, but...

 
mergy
<-subset(merg,merg$Axis.2>  
 -0.1) # excluding axis 2 samples
sub<-subset(merg,merg$Axis.2< -0.1)# taking out samples separating axis 2
sub$axis3_desig<-rep("zAxis 2 A. picea",3) #naming factors based on axis2
mergy$axis3_desig
<-ifelse(mergy$Axis.3<= -0.044,"North",ifelse(mergy$Axis.3>  
0.05,"South","A. picea")) # axis 3 designations!
mergy<-rbind(mergy,sub) # combine them!
mergy<-mergy[-54,] # 54th row has an NA

ggplot settings I like:

 
T<-theme_bw()+theme(text=element_text(size=30),axis.text=element_text(size=30),
legend.text=element_text(size=28),panel.grid.major=element_blank(),
legend.position="none",panel.grid.minor.x = element_blank(),
panel.grid = element_blank(),legend.key = element_blank())

Code to make fig

 
meds <- c(by(mergy$B_40, mergy$axis3_desig, median))
Axis3_b40_v3<-ggplot(data=mergy,aes(x=factor(axis3_desig),y=B_40,fill=factor(axis3_desig)))+
geom_boxplot()+T+
  ylab(expression(paste("Hsp40 basal expression (",2^paste(Delta,Delta,"CT"),")")))+
  scale_x_discrete(expression(paste(italic("                     A. rudis")," clade")),labels=expression(paste(italic("                                                    A. picea "),"            North   ","       South ","    Axis 2")))+
  scale_y_continuous(limits=c(-1,11),breaks=seq(0,11,1))+
  scale_fill_manual(name = "", values = c("gray","deepskyblue4", "firebrick","purple"))+guides(fill=FALSE)
Axis3_b40_v3

highlighting part of code where I can incorporate math symbols into the y axis:

 
ylab(expression(paste("Hsp40 basal expression (",2^paste(Delta,Delta,"CT"),")")))

Final fig

I did play around with the fig in ppt first



Page 26: 2016-06-03 What is a cell type?

I was having lunch with Federico and thought: When I go to seminars and cell biologists use markers to indicate cell types, how do they know? What exactly is a cell type?

I've seen scientists using 1 marker to say, this is a this type of cell.

And in our graduate seminar series, there is a group that studies the physiology of taste receptors. They could not ID specific cell types and that part of the biology was unknown (not the typ 1/2/3's, but the VNO? ).

So I thought: Why not try to do single cell transcriptomics for 10 cells per group (what you think is a group). Then I'd explicitly test for differences using a discriminant analysis, or classification analysis. This approach could lead to a more quantitative justification for designating cell types.

Then we imagined that a totipotent cell that differentiates into diverse cell types can also follow or resemble a phylogenetic tree.

Feder suggests to read:

Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis Gene expression divergence recapitulates the developmental hourglass model



Page 27: 2016-06-03. qPCR plate layout and using the loaner ABI steponeplus Page 11: 2016-05-18

I started up the aBI steponeplus loaner today.

My usual 96 well plate layout is in my physical notebook, but I'll share it here:

XX1X2X3X4X5X6X7X8X9X10X11X12
AColony1:T1Colony1:T2Colony1:T3Colony1:T4Colony1:T5Colony1:T6Colony1:T7Colony1:T8Colony1:T9Colony1:T10Colony1:T11Colony1:T12
BColony1:T1Colony1:T2Colony1:T3Colony1:T4Colony1:T5Colony1:T6Colony1:T7Colony1:T8Colony1:T9Colony1:T10Colony1:T11Colony1:T12
CColony2:T1Colony2:T2Colony2:T3Colony2:T4Colony2:T5Colony2:T6Colony2:T7Colony2:T8Colony2:T9Colony2:T10Colony2:T11Colony2:T12
DColony2:T1Colony2:T2Colony2:T3Colony2:T4Colony2:T5Colony2:T6Colony2:T7Colony2:T8Colony2:T9Colony2:T10Colony2:T11Colony2:T12
EColony3:T1Colony3:T2Colony3:T3Colony3:T4Colony3:T5Colony3:T6Colony3:T7Colony3:T8Colony3:T9Colony3:T10Colony3:T11Colony3:T12
FColony3:T1Colony3:T2Colony3:T3Colony3:T4Colony3:T5Colony3:T6Colony3:T7Colony3:T8Colony3:T9Colony3:T10Colony3:T11Colony3:T12
GColony4:T1Colony4:T2Colony4:T3Colony4:T4Colony4:T5Colony4:T6Colony4:T7Colony4:T8Colony4:T9Colony4:T10Colony4:T11Colony4:T12
HColony4:T1Colony4:T2Colony4:T3Colony4:T4Colony4:T5Colony4:T6Colony4:T7Colony4:T8Colony4:T9Colony4:T10Colony4:T11Colony4:T12

For each plate, I can run the 12 points of a performance curves for 4 colonies in duplicates. Each colony takes up 24 wells: 12 (T1-T12) temperature treatments and then ran in duplicates. Conditions for qpcr found here.

Usual temperatures:

  1. T1 - 25 C
  2. T2 - 28 C
  3. T3 - 30 C
  4. T4 - 31.5 C
  5. T5 - 33 C
  6. T6 - 35 C
  7. T7 - 36.5 C
  8. T8 - 38.5 C
  9. T9 - 40 C
  10. T10 - 41 C
  11. T11 - 25 C (middle of run)
  12. T12 - 25 C (end of run)

T11 and T12 are in there to serve as a time control (When I do the delta delta CT calculation, I'll include those to wash out the effect of time.

Actual samples I ran today for hsp40 541-641 primer pair, 55 C annealing.

Colonies:

  1. Duke2
  2. HF2
  3. Kite4
  4. Kite8

Summary of results:

All colonies had double peaks. So they're not usable. For these colonies, only hsp83 279-392 prims worked. Next, do 18s rRNA for housekeeping gene.

Silvia asked me to show her how to isolate RNA next Monday (2016-06-03), so I can isoalte CJ8( a colony I thought I isolated RNA from, but I didn't). It is in box 54



Page 28: 2016-06-03. Papers showing differences between fast static vs slow dynamic temperature treatments.

There is a large argument in the literature about how to best temperature treat ectotherms. One thing to point out, many fruit fly studies plot their heat tolerance traits against latitude, why not against local temperatures (Tmax, MAT)?

Here are a list of papers that find no clinal variation for slow ramp, but do for fast static experiments.

  1. Castaneda et al. 2015; Evolution

Sgro et al. 2010; Journal of Evolutionary Biology shows complex patterns between slow, hardening, and fast heat shocks across latitude.

Our group has argued that different temperature treatments represent different aspects of their thermal biology. Meaning:

  1. Fast heat shocks, whether dynamic or static = basal heat tolerance
  2. Slow heat shocks, whether dynamic or static = phenotypic plastic response in heat tolerance or acclimation or partial hardening response.


Page 29: 2016-06-06. Isolating RNA: colony CJ8; showing Sylvia

Isolated RNA and converted to cDNA. link to protocols

Colony: CJ8
Samples:

  1. CJ8 25
  2. CJ8 28
  3. CJ8 30
  4. CJ8 31.5
  5. CJ8 33
  6. CJ8 35
  7. CJ8 36.5
  8. CJ8 38.5
  9. CJ8 40
  10. CJ8 41
  11. CJ8 mid
  12. CJ8 last
  13. CJ8 25 -2
  14. CJ8 41 -2

Results of RNA isolation: we have RNA, now convert 50ng to cDNA

NDatespeciescolonybox.conditiontempQubit_quantconversionWater.to.add
79920160606fulvaCJ8box542511.704.275.73
80020160606fulvaCJ8box542811.504.355.65
80120160606fulvaCJ8box54306.198.081.92
80220160606fulvaCJ8box5431.530.501.648.36
80320160606fulvaCJ8box543341.401.218.79
80420160606fulvaCJ8box543543.301.158.85
80520160606fulvaCJ8box5436.519.702.547.46
80620160606fulvaCJ8box5438.514.203.526.48
80720160606fulvaCJ8box544034.001.478.53
80820160606fulvaCJ8box544112.204.105.90
80920160606fulvaCJ8box54mid46.201.088.92
81020160606fulvaCJ8box54last16.902.967.04
81120160606fulvaCJ8box5425_220.202.487.52
81220160606fulvaCJ8box5441_227.601.818.19

Master mix for cDNA conversion

cDNA.synthesisX1.rxnX17.rxns
10xBuffer2.034.0
dNTP0.813.6
multiscribe RT1.017.0
Rnase1.017.0
Primer2.034.0
H203.254.4
total rxn10.0170.0

Steps:

  1. Put pcr strip tubes on ice.
  2. Add h20 specified above table
  3. Add RNA specified above table. Final volume should be 10uL
  4. Aliquot 10 uL of master mix to all tubes.
  5. PCR, see protocol link at beginning of post.


Page 30: 2016-06-07. Brute force fitting nls function in R revisited Page 22: 2016-06-02

I tried this on my desktop to play with the data quick and dirty, but it should go in my dissertation repo:

So the main problem I had in the past was that nls would stop if it the fit was poor, nls2() will brute force fit curves.

Here is my mock dataset:

 
knitr::kable(m)

Colony | temp| FC_hsc701468| FC_Hsp83279| FC_Hsp831583| FC_hsp40424| T| |:------|----:|-------------:|------------:|-------------:|------------:|----:| |SHC6 | 25.0| 0.8180765| 1.2727190| 1.3741141| 1.5064240| 25.0| |SHC6 | 28.0| 0.8999074| 1.3778736| 2.3077710| 1.9297926| 28.0| |SHC6 | 30.0| 0.7922560| 0.9294879| 1.1390051| 1.2217515| 30.0| |SHC6 | 31.5| 0.8561583| 1.1546421| 0.8679142| 1.0613295| 31.5| |SHC6 | 33.0| 3.3855425| 1.9787656| 1.8540116| 2.6265211| 33.0| |SHC6 | 35.0| 7.1917199| 2.5450325| 3.5009441| 4.0735230| 35.0| |SHC6 | 36.5| 19.4708137| 3.4314556| 4.3630936| 5.6521932| 36.5| |SHC6 | 38.5| 30.8610304| 4.2174121| 6.7580144| 6.2792960| 38.5| |SHC6 | 40.0| 32.5603639| 4.6504188| 7.5401674| 9.2319657| 40.0| |SHC6 | 41.0| 26.0984907| 2.8898872| NA| 7.1626251| 41.0| |Avon | 25.0| 1.1732547| 1.2784472| 1.1390452| 1.1012987| 25.0| |Avon | 28.0| 1.4387152| 1.5022087| 1.3336969| 1.3226495| 28.0| |Avon | 30.0| 0.8752047| 1.1583008| 1.2902416| 0.7690966| 30.0| |Avon | 31.5| 1.1998622| 1.0781117| 1.2132109| 0.7942291| 31.5| |Avon | 33.0| 2.0881946| 2.1492356| 2.6482339| 1.8422990| 33.0| |Avon | 35.0| 6.7926522| NA| 4.8219890| 3.9911963| 35.0| |Avon | 36.5| 10.7125651| 4.0352515| 5.5000395| 4.0940620| 36.5| |Avon | 38.5| 22.8261858| 7.0736972| 9.0038236| 6.7629965| 38.5| |Avon | 40.0| NA| NA| NA| NA| 40.0| |Avon | 41.0| 32.0884860| 10.1245880| 12.7812078| 11.7503167| 41.0| |KH7 | 25.0| 0.8116304| 0.7712080| 0.9304326| 0.8853779| 25.0| |KH7 | 28.0| 1.0896696| 1.1911849| 1.1219525| 0.9427790| 28.0| |KH7 | 30.0| 1.1757139| 1.2275952| 1.3403029| 0.9426073| 30.0| |KH7 | 31.5| 1.3429711| 2.1066143| 1.7442530| 1.1386698| 31.5| |KH7 | 33.0| 3.7095882| 3.2454970| 2.8123354| 1.9888572| 33.0| |KH7 | 35.0| 7.6945833| 3.1906332| 3.0515822| 2.2617349| 35.0| |KH7 | 36.5| 19.6792961| 7.5792950| 5.6249460| 4.7316773| 36.5| |KH7 | 38.5| 25.7475125| 6.0603869| 5.5386550| 4.9766214| 38.5| |KH7 | 40.0| 47.1850131| 12.1240032| 9.7991379| 8.5075648| 40.0| |KH7 | 41.0| 44.5367758| 11.4567417| 9.6551695| 9.7848318| 41.0| |test | 25.0| 1.0000000| 10.0000000| 5.0000000| 1.0000000| 25.0| |test | 28.0| 1.0000000| 9.0000000| 5.0000000| 2.0000000| 28.0| |test | 30.0| 2.0000000| 8.0000000| 5.0000000| 4.0000000| 30.0| |test | 31.5| 3.0000000| 7.0000000| 5.0000000| 6.0000000| 31.5| |test | 33.0| 4.0000000| 6.0000000| 5.0000000| 8.0000000| 33.0| |test | 35.0| 5.0000000| 5.0000000| 5.0000000| 8.0000000| 35.0| |test | 36.5| 6.0000000| 4.0000000| 5.0000000| 8.0000000| 36.5| |test | 38.5| 7.0000000| 3.0000000| 5.0000000| 8.0000000| 38.5| |test | 40.0| 8.0000000| 2.0000000| 5.0000000| 8.0000000| 40.0| |test | 41.0| 9.0000000| 1.0000000| 5.0000000| 8.0000000| 41.0|

  1. Now I have to fit curves (boltzmann function) to for each colony and each gene (FC70, FC83, and FC_40). You can see I have a test colony with made up numbers, these should be poor fits.

I'm using nls2() and this curve estimates the critical temperature (Tm), slope (a), and max expression

 
Boltz<-function(data=x){
  B<-nls2(gxp ~ (1+(max-1)/(1+exp((Tm-T)/a))),data=data, start=list(max=80,Tm=35,a=1.05), trace=TRUE,control=nls.control(warnOnly = TRUE, tol = 1e-05, maxiter=1000))
#summary(B)
  return(summary(B)$parameters)
}
  1. I'll need to convert it long format, it is in wide right now.
 
names(m)
[1] "Colony"        "temp"          "FC_hsc70_1468" "FC_Hsp83_279" 
[5] "FC_Hsp83_1583" "FC_hsp40_424"  "T"            
> 
mlong<-gather(m,gene,gxp,FC_hsc70_1468:FC_hsp40_424)
  1. fit for each colony and gene with ddply + Boltz functions
 
fits<-ddply(mlong,.(Colony,gene),Boltz)
fits<-cbind(fits,rep(c("max","Tm","slope"),length(fits$Colony))) # adding parameter column
names(fits)[7]<-"parameter"# renaming column
knitr::kable(fits)


Won'tfit with test colony

Trying fits by removing test colony

 
mlong<-subset(mlong,mlong$Colony!="test")
fits<-ddply(mlong,.(Colony,gene),Boltz)

Output table!

ColonygeneEstimateStd. Errort valuePr(>|t|)parameter
AvonFC_hsc70_146835.81894021.383078025.8979900.0000002max
AvonFC_hsc70_146837.77046250.1824726206.9925550.0000000Tm
AvonFC_hsc70_14681.50756190.111729613.4929500.0000103slope
AvonFC_Hsp83_27913.06214901.77469867.3602070.0007271max
AvonFC_Hsp83_27938.58028790.763726750.5158300.0000001Tm
AvonFC_Hsp83_2792.10310770.35548315.9161950.0019659slope
AvonFC_Hsp83_158316.87510692.43071146.9424560.0004429max
AvonFC_Hsp83_158338.45080170.900189442.7141250.0000000Tm
AvonFC_Hsp83_15832.43529140.36118216.7425580.0005186slope
AvonFC_hsp40_42421.964338012.10347621.8147130.1194923max
AvonFC_hsp40_42440.89338312.944110713.8898930.0000087Tm
AvonFC_hsp40_4242.60541620.69184083.7659190.0093334slope
KH7FC_hsc70_146857.047815712.02926744.7424180.0021020max
KH7FC_hsc70_146838.26713911.023594437.3850600.0000000Tm
KH7FC_hsc70_14681.78748740.50097193.5680390.0091208slope
KH7FC_Hsp83_27918.816469714.20232361.3248870.2268193max
KH7FC_Hsp83_27939.59727515.00392097.9132500.0000977Tm
KH7FC_Hsp83_2792.97608311.47832052.0131520.0839745slope
KH7FC_Hsp83_158316.733714410.31028571.6230120.1486163max
KH7FC_Hsp83_158340.10046654.03907339.9281350.0000224Tm
KH7FC_Hsp83_15833.03883251.08453092.8019790.0264489slope
KH7FC_hsp40_42419.949619414.92707871.3364720.2231999max
KH7FC_hsp40_42441.35338043.890081110.6304670.0000143Tm
KH7FC_hsp40_4242.67770660.82237943.2560480.0139403slope
SHC6FC_hsc70_146830.13577241.351894722.2915090.0000001max
SHC6FC_hsc70_146836.01819170.2145002167.9168170.0000000Tm
SHC6FC_hsc70_14680.76017390.19665293.8655620.0061670slope
SHC6FC_Hsp83_2793.93787510.383720910.2623410.0000180max
SHC6FC_Hsp83_27934.45801830.858031740.1593760.0000000Tm
SHC6FC_Hsp83_2791.27550590.68501601.8620090.1049016slope
SHC6FC_Hsp83_15838.65300461.69234975.1130120.0021932max
SHC6FC_Hsp83_158336.67828521.121473632.7054370.0000001Tm
SHC6FC_Hsp83_15831.80956310.62434222.8983520.0273933slope
SHC6FC_hsp40_4248.37079571.06947467.8270170.0001048max
SHC6FC_hsp40_42435.66697530.916660838.9096790.0000000Tm
SHC6FC_hsp40_4241.81699990.67080632.7086800.0302567slope

looks like it works when there is no poor fit.


Ok, I figured out how to suppress errors and let the funciton loop with failwith() function.

 
m<-read.csv("20160607_gxp_test.csv")
m$T<-m$temp
str(m)
#change to long format
mlong<-gather(m,gene,gxp,FC_hsc70_1468:FC_hsp40_424)
str(mlong)
#mlong<-subset(mlong,mlong$Colony!="test")
fits<-ddply(mlong,.(Colony,gene),failwith(f=Boltz)) ## the magical code here

Table of outputs

ColonygeneEstimateStd. Errort valuePr(>|t|)
AvonFC_hsc70_146835.81894021.383077925.8979910.0000002
AvonFC_hsc70_146837.77046250.1824726206.9925590.0000000
AvonFC_hsc70_14681.50756190.111729613.4929500.0000103
AvonFC_Hsp83_27913.06214891.77469867.3602070.0007271
AvonFC_Hsp83_27938.58028790.763726750.5158300.0000001
AvonFC_Hsp83_2792.10310770.35548325.9161950.0019659
AvonFC_Hsp83_158316.87510712.43071136.9424560.0004429
AvonFC_Hsp83_158338.45080170.900189342.7141270.0000000
AvonFC_Hsp83_15832.43529140.36118216.7425580.0005186
AvonFC_hsp40_42421.964930912.10446591.8146140.1195088
AvonFC_hsp40_42440.89353132.944270813.8891880.0000087
AvonFC_hsp40_4242.60545540.69185463.7659000.0093336
KH7FC_hsc70_146857.047385412.02889224.7425300.0021017
KH7FC_hsc70_146838.26710311.023567637.3860050.0000000
KH7FC_hsc70_14681.78746850.50096593.5680450.0091207
KH7FC_Hsp83_27918.816075414.20134891.3249500.2267995
KH7FC_Hsp83_27939.59713415.00367047.9136180.0000977
KH7FC_Hsp83_2792.97603591.47829002.0131610.0839733
KH7FC_Hsp83_158316.733337410.30955881.6230900.1485996
KH7FC_Hsp83_158340.10031664.03887739.9285800.0000224
KH7FC_Hsp83_15833.03878961.08451052.8019920.0264484
KH7FC_hsp40_42419.950444614.92881521.3363720.2232310
KH7FC_hsp40_42441.35360133.890367510.6297420.0000143
KH7FC_hsp40_4242.67775870.82239993.2560300.0139406
PhilFC_hsc70_146814.48160510.623873523.2124040.0000028
PhilFC_hsc70_146834.81486690.2209902157.5402950.0000000
PhilFC_hsc70_14680.84804380.23879663.5513220.0163645
PhilFC_Hsp83_2794.62387960.448982710.2985700.0001484
PhilFC_Hsp83_27933.74117330.742200045.4610250.0000001
PhilFC_Hsp83_2791.21331280.59810402.0285980.0982866
PhilFC_hsp40_4244.36298720.261431516.6888380.0000141
PhilFC_hsp40_42434.63870890.3401929101.8207760.0000000
PhilFC_hsp40_4240.70436990.34278972.0548160.0950582
SHC6FC_hsc70_146830.13579911.351900522.2914330.0000001
SHC6FC_hsc70_146836.01819690.2145014167.9159090.0000000
SHC6FC_hsc70_14680.76018000.19665473.8655580.0061670
SHC6FC_Hsp83_2793.93790100.383736910.2619820.0000180
SHC6FC_Hsp83_27934.45806790.858065340.1578630.0000000
SHC6FC_Hsp83_2791.27557640.68504611.8620300.1048984
SHC6FC_Hsp83_15838.65300461.69234985.1130120.0021932
SHC6FC_Hsp83_158336.67828511.121473732.7054350.0000001
SHC6FC_Hsp83_15831.80956310.62434222.8983510.0273933
SHC6FC_hsp40_4248.37079581.06947477.8270160.0001048
SHC6FC_hsp40_42435.66697530.916660838.9096770.0000000
SHC6FC_hsp40_4241.81699990.67080632.7086800.0302567
testFC_hsc70_14689.87193490.980091810.0724600.0000204
testFC_hsc70_146835.66495100.896693939.7738300.0000000
testFC_hsc70_14682.98843800.49093016.0872990.0004973
testFC_hsp40_4248.08288670.109083574.0981700.0000000
testFC_hsp40_42430.31922280.1219349248.6509010.0000000
testFC_hsp40_4241.11453180.11364789.8068930.0000243

Notice:

That not all genes have fitted parameters! nice! ie. test hsp83's!

Now we need to:

  1. Predict new sets of values for each gene/colony
  2. Visualize actual vs predicted values!

Code to predict new values

  • first, the plotting function
 
fud<-function(T=seq(25,70,.1),Tm=40,slope=1.8,max=50){
  y<-1+ (max-1)/(1+exp(((Tm-T)/slope)))
  return(y)
  }
plot(fud())
  • OK, now the data manipulation
 
#grab fitted lines from estimates
#change to wide format
library(reshape2)
feeder<-dcast(fits2,Colony+gene~parameter,value.var="Estimate")
list_predictions<-sapply(split(feeder,list(feeder$Colony,feeder$gene)),function(x) {fud(T=seq(25,45,.1),Tm=x$Tm,slope=x$slope,max=x$max)})
predi<-as.data.frame(do.call("rbind", list_predictions),stringAsFactors=FALSE)
predi$Sample<-row.names(predi)
nom<-as.data.frame(matrix(unlist(strsplit(predi$Sample,"[.]")),ncol=2,byrow=TRUE)) #messing with the names
names(nom)<-c("Colony","gene")
predictions<-cbind(predi,nom)
##gotta change to long format
conv<-gather(predictions,Colony,gxp,V1:V201)[,-4]
#need to sort
conv<-conv[order(conv$Sample),] #dont forget to order!!!
plong<-cbind(conv,rep(seq(25,45,.1),nrow(predi)))
names(plong)[5]<-"T"
head(plong)

Plotting with ggplot

  • for hsc70-4 h2

    • lines = predicted fit from function
    • points = empirical
 
b<-subset(plong,plong$gene=="FC_hsc70_1468")
qplot(x=T,y=gxp,data=subset(mlong,mlong$gene=="FC_hsc70_1468"),colour=Colony)+geom_point(size=5)+xlim(25,45)+geom_point(aes(y=gxp,x=T,colour=Colony),data=b)

  • hsp83 279

  • hsp40 541



Page 31: 2016-06-08. Redoing online notebook template

I updated my online notebook template.. I probably should have done this from the start. But there is a table of contents with 200 entries with automatic links to those entries.

Code for automatically generating table of contents:

* [Page 1: Date](#id-section1). Title
* [Page 2: Date](#id-section2). Title

For table of contents, you want this syntax:

  1. I used R with a series of paste functions to get the right syntax
  2. Exported to csv and just pasted it into the markdown
 
#constructing table of contents
one<-rep("* [Page",200)
two<-seq(1:200)
three<-paste(one,two)
four<-paste(three,":","]",sep="")
five<-paste(four,"(#id-section",two,").",sep="")
six<-data.frame(five)
write.csv(six,"ffff.csv")

Code for automatically generating entries with titles that correspond with table of contents

For this you want this syntax:

------ 

<div id='id-section1'/>  
  1. R manipulations
 
b<-rep("------",200)
c<-rep("<div id='id-section",200)
d<-seq(1:200)
e
<-paste(d,"'/>  
",sep="")
m<-paste(c,e,sep="")
m
i<-rep("### Page",200)
i2<-paste(i,rep(1:200))
i3<-paste(i2,":",sep="") # can even add year here
m1<-paste(b,m,i3,sep="
          ")
write.csv(m1,"testy.csv")
  1. Export to csv
  2. You do need to get rid of header and first column manually, save and close (in excel)
  3. Open in textwrangler and you'll see that the line breaks appear. Then get rid of quotes.


Page 32: 2016-06-08. qPCRs, 18s rRNA for Duke2, HF2, Kite 4, Kite8, 60 C annealing

Ran qpcr plate (96 well) on loaner ABI steponeplus. Samples were already 1/10 diluted, and for 18s, I dilute 1/10 again to have a 1/100 dilution.

Colonies:

  1. Duke2
  2. HF2
  3. Kite4
  4. Kite8
  5. Made master mix: added 550 uL sybr green, 21 uL F+R primer, and 84 uL h20
  6. Dispensed 6 uL into plate
  7. Added 4 uL of cDNA (1/100 dilution) into plate
  8. qPCR, 60 C annealing

Summary:

Single peaks from melt curve analysis indicating single amplicon. The threshold was set to 0.5.

Updated summary of whole project so far:

ProgressX18shsc70.414681592_degenhsp83279392_degenhsp8315831682_degenhsp40424525degen
works5951574151
double peaks2115197
total6162626058

Dilutions of future samples

Dilute 1/10: 5 uL of sample + 45 uL of h20 in 12 strip pcr tubes.

Sample colonies:

  1. CJ2
  2. CJ5
  3. Duke1
  4. SHC8


Page 33: 2016-06-08. Climate cascade meeting.

SHC can't make it. KM going to process samples. ANBE + NJG meet

  1. Evolution poster: Go over figures and conclusions
  2. Update gxp curve fitting

NJG suggestions:

  • For figure4, gray out points and put pretreatment temps beside each line.
  • Figure 3, plot hardening ability vs basal cold tolerance.


Page 34: 2016-06-09; 2016-06-10. qPCRs: Duke1, CJ2, SHC8, CJ5

  1. hsc70-4 h2 1468, 60C annealing results: only Duke1 worked
  2. hsc70-4 h2 1468, 55C annealing results: none worked
  3. hsp83 279 prim, 55C annealing results: all worked
  4. hsp40 541 prim, 55C annealing results: all worked , although some replicates excluded due to non-specificity
  5. 18s rRNA, 60 C annealing results: Samples were diluted 1/10.


Page 35: 2016-06-10. ABI steponeplus machine fix and sending back instrument.

machine repaired

*Dear Andrew, The repair of your instrument on service reference notification 405638599 has been completed and is now on its way back to you. For your record the reference tracking number is 650686939762 I will be sending you a separate email with the decontamination forms and FedEx labels to return the loaner you received during the repair of yor instrument. Please send this loaner back in a timely fashion as we do have other customers in need of this loaner. Thank you, Leticia C. Instrument Services
Life Sciences Solutions*

Sending back loaner

Dear Andrew,
Attached you will find the necessary paperwork to ensure that the loaner unit is returned correctly and promptly.

  1. Your RMA is 14635-69
  2. Please review and complete the attached decontamination form and print out 2 copies.
  3. Please remember to place the instrument in the "Ship Prep" position prior to packing the instrument.
  4. Please DO NOT include your power cord with your instrument (remove from unit and keep it).
  5. Please DO NOT include any consumables (trays, tubes, etc.).
  6. Place a copy of the completed decontamination form INSIDE and OUTSIDE of the box.
  7. Print out the FedEx label, (link will arrive via separate email).
    The return transaction cannot be processed until the completed decontamination form and the instrument are received. Thank you, Leticia C. Instrument Services
    Life Sciences Solutions


2016-06-13 update

We received the repaired machine back.

Here is the decomtamination form for the loaner.



Page 36: 2016-06-10. Thoughts on Kingsolver & Woods 2016, AmNat. ref here

reference:

  • Kingsolver JG, Woods HA. 2016. Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates. The American Naturalist 187:283–294.

This paper models growth rate under heat stress over time. The authors use Hsp gene and protein expression as a measure of cost and ingestion rate as a trait that inputs energy into an animal.

Fig 1:

The physiology is more complicated than this. First, increasing Hsp gene expression is costly in itself, so there should be a separate cost term. While the actual Hsp protein expression is costly to invest into too, there is a cost for using them and also having unstable proteomes. Also, organisms can get rid of unstable proteins through degradation and haulting translation which would offsets the costs of Hsp (gene or protein) expression and using it. Basically, I'm saying the actual cost incurred come in the form of macromolecular damage (proteome stability) and the response to macromolecular damage (Hsp expression). Not sure if proteome stability cost needs to included

But here is a fig for proteome stability (prop non-denatured) as a function of Temperature:

The black line is 10 min incubations, the red line is 20 min. I fit a non-linear logistic curve to it link. This captures the incurring costs associated with temperature AND time without an acclimation response. It'd be interesting to develop a model from this....


2016-06-11. Follow up model

I've included potentially important physiological components. Macromolecular damage includes unstable proteins and damage to membranes. For simplicity, it can just represent unstable proteins. On second thought, it should be macromolecular stability, assuming there is an optimal stability of membranes and proteins for growth. So temperature directly affects macromolecular stability and given a certain amount of damage(instability), it elicits a physiological response ( transcription + translation) . Transcription includes all the transcripts that turn on and turn off. If the net effect is using more energy to turn on/off over higher temperatures, this incurs a cost. Same with translation, but there is also a cost of "using" the proteins. For example, Hsp mediated folding uses ATP. However, the combination of altering translation rates and using the proteins offsets the costs of macromolecular damage which directly affects growth.

Anyway, I'd call this the "thermostat" model.

  • Craig EA, Gross CA. 1991. Is hsp70 the cellular thermometer? Trends in Biochemical Sciences 16:135–140.


2016-06-13. Predictions of thermostat model

  1. There is some temperature where the costs associated with macromolecular damage exceeds any type of physiological response (transcription, translation), resulting in inhibited growth.
  2. Under sublethal temperature stress, the negative long term outcome of inducing a physiological response may be tempered by increasing ingestion rate.
  3. Although a physiological response is costly, at sublethal levels, the combination of gene/protein expression(downregulating unstable proteins) and upreg of Hsps may have a net positive effect on proteome stability, which is related to growth.

Note: There is a cool paper by Hoekstra & Montooth that shows how Hsp70 expression covaries with metabolic rate.

  • Hoekstra LA, Montooth KL. 2013. Inducing extra copies of the Hsp70 gene in Drosophila melanogaster increases energetic demand. BMC Evolutionary Biology 13:68.

Other thoughts:

  1. One cool thing about the model is that you can add transcriptome, proteome data as parameters into the model. How?
  • Count the costs of each transcript (# of basepairs) and subtract response from baseline to get relative response. One could argue that overall, Hsp expression is not costly because other transcripts can be downregulated at the same time. I don't think anybody has tried to explore this in transcriptome datasets.
  1. In aquatic systems, oxygen limitation seems to be the mechanism for upper thermal limits. Is there a way to make one global model so that we can make predictions for any ectotherm?


Page 37: 2016-06-11. Quantifying natural selection in natural populations

I've been reading more Kingsolver (specifically Kingsolver et al. 2001;Kingsolver & Diamond 2011 which led me to think about quantifying modes of selection in nature. Basically all you need to do is regress traits against relative fitness (fitness of individual / mean fitness of population). The slope is the magnitude of direction selection. Also, if you want to detect disruptive or stabilizing, then you can add a quadratic term. It'd be interesting to apply this technique to assess the fitness consequences of climate change. So take a species and measure fitness and traits along a transect to pick up the warm-edge, core, and cool-edge populations.

Refs for me to read:



Page 38: 2016-06-13. qPCR update for Duke1,CJ2,SHC8,CJ5. Randomizing samples treated at 25C(reference for basal expression) for qpcrs.

Running qpcr for Duke1/CJ2/SHC8/CJ5; hsc70-4 h2 50C annealing.

Randomizing procedure

  • Load data set as csv in R
  • Code for sampling randomly:
 
write.csv(sample(d$colonies),"ra.csv")
  • Changed csv so that I have rows and columns
  • Here is the layout:
RowColumnColony
A1Ala1
A2KITE8
A3Yates2
A4FBRAGG3
A5CJ4
A6BK
A7HW7
A8KH3
A9DUKE9
A10SHC8
A11CJ2
A12HF2
B1shc7
B2MA
B3PB07-23
B4CJ8
B5Lex9
B6ApGxL10A
B7Phillips
B8hf3
B9PB17-10
B10CJ6
B11Ala4
B12CJ5
C1PB17-14
C2DUKE8
C3KH1
C4Greenfield
C5fbragg1
C6Avon19.1
C7CampNSP
C8KH6
C9KH5
C10DUKE2
C11SHC9
C12LPR2
D1KITE4
D2FBRAGG4
D3KH7
D4DUKE1
D5PMBE
D6DUKE6
D7CJ7
D8fbragg5
D9CJ1
D10LPR4
D11YATES3
D12POP1
E1kh2
E2Bingham
E3SHC3
E4ApGxL09A
E5Ted6
E6DUKE7
E7SHC6
E8DUKE4
E9DUKE5
E10Ted4
E11EXIT65
E12sidewalk (formica)
F1POP2
F2fbragg2
F3SHC2
F4LEX13
F5SHC5
F6cremat
F7SHC10
F8pop3
F9SR45
F10AS4

I'll arrange these samples in rows of 12 in pcr strip tubes, dilute 1/10 and then I can multichannel the samples into a 96 well qpcr plate.



Page 39: 2016-06-13. Post doc project idea: Assessing current impacts of climate change in natural populations.

Alternate title: Quantifying the intensity of selection associated with climate change.

Question: Are populations experiencing selection associated with climate change out in nature?

Hypothesis: The magnitude and direction of selection acts on different parts of their range depending on their thermal environment.
Predictions:

  1. Individuals at the warm edge of their range experience positive directional selection for a thermal trait.
  2. Individuals at the core experience stabilizing selection for a thermal trait.
  3. Individuals at the cool edge experience negative directional selection for a thermal trait.

Approach: Measure phenotypic selection on physiological, behavioral traits across a cline for a given species. A good system to measure phenotypic selection are ants because alates are direct measurement of fitness. So the product of # of alates by their weights will give a meaurement of fitness. Then, regress different traits on relative fitness to obtain a selection gradient. I can detect disruptive and stabilizing selection by adding a quadratic term in the regression model. I don't want to automatically assign individuals to warm-edge, cool edge, core. I'd sample along a cline (10-20 sites?). Also, there may be differences in the phenology for alates to develop, so I'd probably need to sample 3-4 times a year?

Some key traits:

  1. Colony size ( # of workers, # of larvae, # of pupae, Colony biomass really)
  2. Thermal tolerance ( CTmax, Ctmin, KO-time, hardening ability)
  3. Morphology ( leg length, average worker weight)

Some things to think about:

  1. I read somewhere (find it) that what one really wants is the life time reproductive success (LRS). But this is almost impossible to measure. In this sense, it is more accurate to say I'm measuring episodic selection (Angiletta 2009)?
  2. Also, one should be comparing within a generation. There may be different age classes of colonies, but it may be reasonable to assume that if the colony has alates, then they belong to a similar age class.
  3. I'd need to do some pop gen to determine the population level structure so that I can empirically assign individuals to populations.

Another thought: Phenotypic selection seems like a good way to associate higher and lower phenotypic levels.

  1. For example, I have CTmax data and the underlying stress response measured. CTmax is a component of fitness, so if I regress the stress response onto the relative fitness of CTmax(CTmax of individual/ population CTmax mean) , then I can determine a selection gradient.
  2. I can also measure phenotypic selection for allele frequencies! (Dr. Goodnight's suggestion)


Page 40: 2016-06-14. qPCR's: Diluting samples for quantifying basal expression and repeats

Diluting samples for basal expression:

I diluted 1x cDNA samples 1:10, so I added 5 uL cDNA with 45 uL water. I added 25C-mid samples (because of technical mistake in diluting) for some colonies to replace 25C samples that were started at the beginning of heat shock.

  1. F10: Duke8 41 (switched with AS4)
  2. F11: SHC10 mid
  3. F12: AS4 25C
  4. G1: yates3 mid
  5. G2: shc2 mid
  6. G3: exit65 mid
  7. G4: greenfield mid

I also diluted the 1:10 cDNA samples again at 1:10 to run 18s rRNA. So I added 2 uL cDNA into 18 uL water.

All in all, it took ~ 3 hours from organization to completion.


Updated plate layout:

RowColumnColony
A1Ala1
A2KITE8
A3Yates2
A4FBRAGG3
A5CJ4
A6BK
A7HW7
A8KH3
A9DUKE9
A10SHC8
A11CJ2
A12HF2
B1shc7
B2MA
B3PB07-23
B4CJ8
B5Lex9
B6ApGxL10A
B7Phillips
B8hf3
B9PB17-10
B10CJ6
B11Ala4
B12CJ5
C1PB17-14
C2DUKE8
C3KH1
C4Greenfield
C5fbragg1
C6Avon19.1
C7CampNSP
C8KH6
C9KH5
C10DUKE2
C11SHC9
C12LPR2
D1KITE4
D2FBRAGG4
D3KH7
D4DUKE1
D5PMBE
D6DUKE6
D7CJ7
D8fbragg5
D9CJ1
D10LPR4
D11YATES3
D12POP1
E1kh2
E2Bingham
E3SHC3
E4ApGxL09A
E5Ted6
E6DUKE7
E7SHC6
E8DUKE4
E9DUKE5
E10Ted4
E11EXIT65
E12sidewalk (formica)
F1POP2
F2fbragg2
F3SHC2
F4LEX13
F5SHC5
F6cremat
F7SHC10
F8pop3
F9SR45
F10Duke 8 41
F11SHC10 mid
F12AS4
G1yates3 mid
G2shc2 mid
G3exit65 mid
G4gf mid

Repeats ran alongside CJ8

Ran hsp83 279 55 C annealing for following coloines:

  1. Fbragg1
  2. CJ1
  3. CJ8
  4. KH1; 1 row
  5. FB4; 1 row

results: Fb4 not work

Ran hsp40 541 prim 55C annealing for the same colonies as above.
results: CJ8 and KH1 worked

Ran 18s rRNA for following colonies:

  1. CJ1
  2. CJ8
  3. KH1

results: all worked


Update of samples:

StatusX18shsc70.414681592_degenhsp83279392_degenhsp8315831682_degenhsp40424525degen
works6758654557
double peaks0922010
total6767676567


Page 41: 2016-06-15. qPCRs to quantify basal expression. (Evolution of stress response project)

I probably should have mentioned this earlier, but since all the samples are on 1 plate, I'll be quantifying 4 genes in a replicated randomized block design.

So for each gene, run 2 plates. Samples on the plate were already previously randomized.

  1. Ran 18s rRNA plate 1, 55 C annealing temp.
  2. Ran hsc70-4 h2 1468 plate 1, 55 C annealing temp.
  3. Ran hsp83 279 plate 1, 55 C annealing temp.
  4. Ran hsp40 541 plate 1, 55 C annealing temp.



Page 42: 2016-06-15. Evolution talks I want to attend.

Not a comprehensive list, but a start.

DaySpeakerRoomTimeTitleSession
Monday, June 20Tangwancheroen, SumaeteeMR10C1:30PMAdaptation via divergence in gene regulation along a temperature cline: cis and trans effects on HSP expression the copepod Tigriopus californicusAdaptation 1
Monday, June 20Lyons,MartaBallroomC2:00PMPredicting range contractions in niche conserved plethodontid salamanders comparing correlative and biophysical niche modelsEvolutionary ecology 1
Saturday, June 18Gilbert, KimberlyMR6B1:30PMLocal maladaptation interacts with expansion load during species range expansionsPopulation genetics theory methods 1
Saturday, June 18Kingsolver,JoelBallroomC9:15AMElevational clines in plastic and evolutionary responses of montane butterflies to climate changeContemporary evolution
Sunday, June 19Nunney,LeonardMR9AB2:45PMAdapting to a changing environment: modeling the interaction of directional evolution and plasticityPhenotypic plasticity
Sunday, June 19Muir,ChrisBallroomA8:30AMWhat is evolutionary physiology?Evolutionary physiological synthesis 1
Sunday, June 19Garcia,MatteoMR79:00AMPerformance determines division of labor in leafcutting antsSocial systems 1
Sunday, June 19Campbell Staton, ShaneMR9C9:15AMPolar Vortex cold wave elicits rapid physiological, regulatory and genetic shifts in populations of the green anole, Anolis carolinensisExpression studies
Sunday, June 19Fumagalli, SarahMR79:30AMThe evolution of cooperation between unrelated individualsSocial systems 1
Sunday, June 19Catullo,ReneeBallroomC10:15AMExtending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolutionNiche modeling
Sunday, June 19Powell,ScottMR9AB10:15AMDiversification of complex social phenotypes: insights from the turtle antsAdaptation
Sunday, June 19Sexton, JasonMR6A10:45AMDoes species niche breadth predict plant performance in novel environments? An experimental test in Australian Alps plantsBiogeography I
Sunday, June 19Rosauer,DanBallroomC10:45AMDistribution models below species levelNiche modeling
Sunday, June 19Chau,LinhMR710:45AMGene Duplication in the Evolution of Sex- and Caste-biased Gene Expression in Social InsectsSocial systems 2
Sunday, June 19Gunderson,AlexBallroomA11:00AMThe physiology of adaptive radiationEvolutionary physiological synthesis 2
Sunday, June 19Angert,AmyBallroomA11:15AMLinking physiology to biogeography in monkeyflowersEvolutionary physiological synthesis 2
Sunday, June 19Parker,JosephMR9AB11:15AMAn inordinate fondness for rove beetles: evolution and diversification of ant social parasitesAdaptation


Page 43: 2016-06-16. Figure for curve fitting: see Success with failwith() and Status update of samples.

Hsp70, 40, 83 from top to bottom



Page 44: 2016-07-18. Summary statistics for modulation of Hsp paper.

Overall means

mean xp
FC_8311.218868
FC_7050.227915
FC_4010.535062
B_831.735492
B_701.446917
B_401.935067

Comparison among genes

medians

Rearing_TempInduction83Basal83Induction70Basal70Induction40Basal40
207.0462160.903238448.881870.47737976.9036181.155806
2610.4411491.519794939.131392.231829713.2670331.559372

means

Rearing_TempInduction83Basal83Induction70Basal70Induction40Basal40
209.3525221.26225455.452300.6402728.0596471.680941
2614.3203652.33431942.622332.56514914.0867442.299683


Page 45: 2016-07-19. Meeting with VGN proteomics facility

Meeting with Wai and Bethany to finish up the comparative proteomics project (Amanda was working on this).

I went over our experimental protocol. Wai suggested to do searches with MASCOT and SEQUEST to ID more proteins.

Timeline:

  • Next week for TMT labelling
  • First week of August for sending me a dataset


Page 46: 2016-07-21. Reference samples for mapping index; Hsp modulation and thermal niche paper.

From SHC:

  • FMU4 (ApGxL-03A)
  • WP9 (ApGxL-11A)
  • BRF4 (ApGxL-16A)
  • SEB9 (ApGxL-22C)
  • MB6 (ApGxL-26E)


Page 47: 2016-07-26. Learning mixed effects stat models

Mixed effects stat models let you include random or fixed variables, implemented in (lme4 package](http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf). The difference? Summarized here in dynamic ecology blog.

As I understand it:
(Using sites as an example...)

Fixed effect...

  • variable you're interested in
  • continuous or categorical
  • estimates values at each site, so if you have a lot of sites, it'll use more degrees of freedom
  • syntax: (y~x+s)

Random effect...

  • variable you want to control (blocking)
  • categorical/discrete (Can not have continuous variable as a random effect))
  • estimates variance among all sites, conserves degrees of freedom (also cant calculate p values)
  • syntax: (yx,random=1|s )
  • rule of thumb: sites should have roughly >5 levels ( 5 sites)
  • comment in blog post says you can think of RE as groups having different slopes and or intercepts

Typing this out seems to make more sense. Now to go over some of the syntax....

This tutorial gives a good explanation.

It's hard to get p-values from mixed effects models, so one strategy is to make a full and null model with and without the variable of interest and running an anova. Don't use REML when doing these comparisons.

More syntax...

 
politeness.model = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=politeness)

This syntax (1|variable) specifies subject and scenario as random effects. It is a random intercept model.

This specifies a random slope model:

 
politeness.model = lmer(frequency ~ attitude + gender + (1+attitude|subject) + (1+attitude|scenario),
data=politeness,REML=FALSE)

This allows subjects and items to have difference slops and intercepts. Only thing changed is the random effect

Best practice to fit random slopes and intercepts! (Grueber et al. 2011, Journal of Evolutionary Biology; and the tutorial advocates for this because it reduces type I and II errors)

Notes, assumptions similar to fixed effects models

  1. Check for collinearity and influential data points
  2. check residuals, Q-Qplots
  3. One of the main shifts from linear models to mixed effect models was to account for non-independence (measuring outcome of same individual)

random effects note

So, a random effect is generally something that can be expected to have a nonsystematic,
idiosyncratic, unpredictable, or “random” influence on your data. In
experiments, that’s often “subject” and “item”, and you generally want to
generalize over the idiosyncrasies of individual subjects and items.

fixed effects note

Fixed effects on the other hand are expected to have a systematic and predictable
influence on your data.

Writing this up in a methods section

We used R (R Core Team, 2012) and lme4 (Bates, Maechler & Bolker,
2012) to perform a linear mixed effects analysis of the relationship
between pitch and politeness. As fixed effects, we entered politeness and
gender (without interaction term) into the model. As random effects, we
had intercepts for subjects and items, as well as by-subject and by-item
random slopes for the effect of politeness. Visual inspection of residual
plots did not reveal any obvious deviations from homoscedasticity or
normality. P-values were obtained by likelihood ratio tests of the full
model with the effect in question against the model without the effect in
question.


Page 48: 2016-07-27. Meeting with Steve Keller to discuss post doc idea (started here: Page 37: 2016-06-11. Quantifying natural selection in natural populations )

Raw notes from notebook: Page 1
Page 2

Thoughts+ retyping notes:

  1. One challenge Steve brought up was that photoperiod is diff across lat and is not changing with climate. So when scientists do recipricol transplants between north and south populations, photoperiod is a confounding effect with temperature/climate.
  2. Selection gradients may not be increasing with climate if there is insufficient genetic variation to respond to selection. It could decrease. I need to think more carefully about how to connect selection gradients with population level dynamics. (I still need to read Ruth Shaw's aster modeling papers).
  3. RIght now, as I've pitched it, I have no manipulations which is something I need to determine whether temperature is actually increasing selection gradients.
  • start cohorts at different times to control development
  • for biotic interactions, manipulate floral display for pollintors
  • induce herbivory- plant stress responses
  1. I could estimate kinship matrix in natural populations with many markers(thousands) and apply quantitative genetics techniques to identify constraints between different traits.

Post doc grants:

  1. Plant genome fellowship due in november (focused on crop or crop related plants)
  • systems: sunflower, grasses, medacago, poplar(viability selection, high early life stage mortality), willows
  1. Fullbright for international opportunities


Page 49:2016-07-28. Quantitative genetics and the molecular basis of complex traits

Molecular biologists and quantitative genetics are intersted in,at some level, the molecular basis of complex traits. However, each field uses different approaches to this problem. Traditionally, the molecular biologist will manipulate a gene within a single genotype to observe its effect on a phenotype. On the other hand, a quantitative geneticist will take many different genotypes, shuffle genes around by mating individuals with each other, and then statistically assign the effect of genotypes in general on a phenotype.

It'd be interesting to merge both approaches: Knock out or in a gene for many genotypes within a mating design. This way, you can observe the effect on a particular gene within many different genotypes. Just a thought!

Paaby lab is doing a bit of this. She gave a talk earlier this year? Anyway, she picked a well known developmental pathway in worms(C. elegans) and used RNAi for many different species(I think) for a panel of genes.



Page 50: 2016-08-02. Picking a plant system for post doc idea

I plan on applying for Plant Genome Research Program (PGRP). Previous awards. I need a plany with a sequenced genome which is a crop or crop-related. List of sequenced genomes, list of genomes with "good" annotations

Mimulus guttatus (Monkey Flower)

Cool paper showing that there are annuals and perrenials which vary in morphology under a common garden. So, I could compare selection gradients for annuals vs perrenials.

  • Read this lab's papers because they are interseted in similar things.

Leavenworthia alabamica

Annual secluded to Alabama and it has low population size. Populations/individuals vary in their reproductive mode: self compatible, self incompatible. So it'd be interesting to see how selection acts on these different reproductive forms.

Papers:

Panicum virgatum (switch grass)

Perrenial with wide distribution from Canada to Mexico. We could look at episodic selection under a common garden across latitude. If you have performance on the y axis and x axis is lat(climate), and we have a mating design, we can analyze the data as function-valued traits. Growth would be a good option.

Genome paper

Measuring physiology: IR gas exchange analyzer

Measures photosynthetic rate and transpiration rate!

Cool technique to QTL with function valued traits here



Page 51: 2016-08-02; 2016-08-03. Climate cascade meeting

  1. Project updates:
  • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

  • Multiple stressors ms: NJG gave me edits 2016-08-02, rework, then send to Sara. Aiming to submit next week?

  • Range limits ms: Go over figures, meet with NJG 2016-08-03 to go over intro, methods, and results.

  • Figure suggestions:

    • recolor map, keep maps consistent
    • shift cold tolerance vs tmin legend from horiztonal to vertical.
    • double checkt he interaction of tmin and pre treatment temp; the betas
    • create 2 panel fig for basal cold tolerance and hardening.
  • Thermal niche ms: Lacey's hands

  • HSP modulation paper: SHC's hands

  • Stressed in nature MS: Curtis' hands ; he was suppose to give me a timeline

  • Genome sequencing? Mlau's hands

  • Phylogenomics of common forest ants: SHC and Bernice assembling data matrix. ADN needs to send vouchers to Bernice.

  1. Ask about post doc (NJG and SHC think its ok to stay at same institution)
  2. Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper? Apply for funding? Suitor Travel Grant Deadline is october 31
  3. Biolunch: Should I talk about github?( SHC and NJG are ok with this but I need to think about my delivery and what people can "handle") Range limits? Dissertation talk (I want to give this in the Spring ( SHC says yes ))?


Page 52: 2016-08-04. Following up stats, range limits project

analysis of data with pre treatment temperature as continuous within an anova

 
## anova model
k.dat$pretreat_Temp<-as.numeric(as.character(k.dat$pretreat_Temp))
cold.mod1<-aov(treatment_recovery_s~Tmin*pretreat_Temp+Colony,data=k.dat) # testing interaction between pre-treat temp and T min (both continuous)
Df  Sum Sq Mean Sq F value   Pr(>F)    
Tmin                1  116145  116145   5.755 0.018765 *  
pretreat_Temp       1  261310  261310  12.949 0.000553 ***
Tmin:pretreat_Temp  1  162568  162568   8.056 0.005747 ** 
Residuals          80 1614444   20181                     

analysis of data with pre treatment temperature as a factor within a linear model

##analysis of data with pre treatment temperature as a factor within a linear model
k.dat$pretreat_Temp<-as.factor(as.character(k.dat$pretreat_Temp))
cold.mod1<-lm(treatment_recovery_s~Tmin*pretreat_Temp+Colony,data=k.dat) #testing interaction between factors of pretreatment with Tmin(continuous)
#summary(cold.mod1)
#stepwise aic
qc<-stepAIC(cold.mod1,direction="both")
summary(qc)

#output:
summary(qc)

Call:
lm(formula = treatment_recovery_s ~ Tmin + pretreat_Temp + Tmin:pretreat_Temp, 
    data = k.dat)

Residuals:
    Min      1Q  Median      3Q     Max 
-292.69  -79.96  -10.13   69.04  355.98 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)            210.58     363.71   0.579  0.56432    
Tmin                   -24.64      24.27  -1.015  0.31321    
pretreat_Temp0         450.14     514.37   0.875  0.38426    
pretreat_Temp25       1796.59     514.37   3.493  0.00080 ***
pretreat_Temp5        1173.92     514.37   2.282  0.02527 *  
Tmin:pretreat_Temp0     40.73      34.33   1.186  0.23916    
Tmin:pretreat_Temp25   114.57      34.33   3.338  0.00131 ** 
Tmin:pretreat_Temp5     76.71      34.33   2.235  0.02837 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 124 on 76 degrees of freedom
Multiple R-squared:  0.4577,	Adjusted R-squared:  0.4078 
F-statistic: 9.164 on 7 and 76 DF,  p-value: 3.644e-08

More digestable table:

 
knitr::kable(summary(qc)$coefficients)
EstimateStd. Errort valuePr(>|t|)
(Intercept)210.58099363.714950.57897260.5643197
Tmin-24.6432424.27295-1.01525530.3132054
pretreat_Temp0450.14412514.370610.87513580.3842574
pretreat_Temp251796.59479514.370613.49280220.0008002
pretreat_Temp51173.91549514.370612.28223670.0252738
Tmin:pretreat_Temp040.7253334.327141.18638890.2391643
Tmin:pretreat_Temp25114.5734834.327143.33769400.0013101
Tmin:pretreat_Temp576.7128034.327142.23475660.0283715

Hardening ability

 
cold.mod8<-aov(hardening~Tmin*PT+Colony,data=mew6)
qc8<-stepAIC(cold.mod8,direction="both")
summary(qc8)
  Df  Sum Sq Mean Sq F value   Pr(>F)    
Tmin         1   85850   85850   5.903  0.02055 *  
PT           2  550143  275071  18.915 3.01e-06 ***
Colony      17 1435781   84458   5.808 6.88e-06 ***
Tmin:PT      2  179795   89897   6.182  0.00513 ** 
Residuals   34  494455   14543  

Good post to read for understanding interactions here

2016-08-11 updated analyses

Basal cold tolerance re-analyzed

	df	SS	MS	F-value	P-value
Tmin	1	114575	114575	6.757	0.0122
Pre-treatment	3	623523	207841	12.257	<0.001 
Tmin × Pre-treatment	3	189451	63150	3.724	0.0169
Colony	17	228419	13436	0.792	0.6931
Residuals	51	864771	16956		

Cold hardening re-analyzed (double checked)

	df	SS	MS	F-value	P-value
Tmin	1	411796	411796	26.318	<0.001 
Pre-treatment	2	363498	181749	11.616	<0.001 
Tmin × Pre-treatment	2	98308	49154	3.141	0.055986
Colony	17	1285635	75626	4.833	<0.001 
Residuals	34	531992	15647		

Interaction non-significant; the change was caused by a mistake made by consolidating scripts.



Page 53: 2016-08-08. Post doc ideas part 2

1. How does selection operate on the life histories of poplar? [Similar to this post doc listing] (http://evol.mcmaster.ca/~brian/evoldir/PostDocs/INRAFrance.EvolQuantGenetics)

Approach: Identify and characterize how natural selectin operates at different life stages of poplar

  • Measure selection gradients on age structured populations in the field
  • Is it possible to heat shock leaves out in the field?
  • Viability selection( Mojica & Kelly ref) : One thing missing from selection studies is that organisms can die before expressing a trait (They confusingly call this the invisible fraction of variation). Can we test this by taking cuttings and planting them? Or does it have to be from seeds? (I think the latter)
  • Good natural history

How does contemporary episodes of natural selection compare with past local adaptation to climate?

Approach: Compare selection in the field to common garden. There is a cool paper by Kingsolver et al. 2012 that sugguests we account for environmental covariation with selection gradient analyses. If we have a relatedness matrix, we can see if individuals are spatially clustered with environment.

2. How does selection operate on populations of monkeyflowers (Mimulus guttatus) with different modes of reproduction?

Approach: Identify and characterize how natural selection operates on perennials and annuls Which one is more susceptbile? Are there shifts between one or the other?

  • Measure selection gradients across a whole cline (whole west coast of US) for perrenials and annuals.
  • Perrenials experience greater within generation variation than among--so they may harbor greater plasticity than annuals.

3. Gladecresses Leavenworthia alabamica

  • measure selection gradients between self compatible vs self incompatible for populations in Alabama.
  • Low adaptive potential in self compatible vs self incompatible.

4. Identifying specific genotypes for optimal growth in the Shrub willow (Salix pupurea)

Approach1: Evaluate growth as a function valued trait across latitudinal cline

  • Mate and plot genotypes in the field. Or take clippings and plant?
  • Measure growth across latitude.

Approach2: Evaluate growth as a function valued trait within a common garden

  • Possible to have them reared at 6 temperatures and 3 moisture levels? *

Analysis: Determine shifts in growth reaction norms.



Page 54: 2016-08-10. Climate cascade meeting

  1. Project updates:
  • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)
  • Multiple stressors ms: SHC's hands- discussion is too disjointed, reworking organization
  • Range limits ms: Fixed figures, go over!
  • Thermal niche ms: Lacy and I are working on it. Discussion left to do
  • HSP modulation paper: SHC's hands
  • Stressed in nature MS: Curtis' hands ; he was suppose to give me a timeline
  • Genome sequencing? Mlau's hands
  • Phylogenomics of common forest ants: ADN to send Bernice samples this week.
  1. Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.
  1. Biolunch, working title: Strategies for achieving reproducible research ; get picture of the meeting


Page 55: 2016-08-11. Overlaying raster files in a map in R

Good link to show how to overlay here. I've had to use this to plot climate cut offs (example: here)

Some code:

Cropping world map, I set coords to region I'm interested in: Maine

 
w2 <- getData('worldclim', var='bio', res=.5,lat=45,lon=-68) # grab worldclim data; with .5 res you need to specify coordinates
extent<-c(-72,-65,42,48)
bew<-crop(w2,extent)

Here is the code to make cut offs: designate extreme values and then plotting it will be easy

You have to get rid of NAs and assign to variable.

 
Tm<-na.omit(bew[[5]])
Tm[bew[[5]] < 246.5] <- 100 # absent
Tm[bew[[5]] > 246.5] <- 1

Here is plotting the cut off

 
dbio2$coco<-ifelse(dbio2$Found_Notfound=="1","red","black") # specify color of points base don presence absence
plot(lar[[5]],col=c("white","grey75"),legend=F)
map("worldHires",c("USA","Canada"),add=TRUE)
map("state", c('maine','vermont','new hampshire'), add = TRUE)
points(dbio2$Lon,dbio2$Lat,pch=16,col=dbio2$coco)


Page 56: 2016-08-16 range limits paper, data analysis of chill coma recovery time (CCRT) revisited

From my G matrix anlaysis, I find variation in the cooler-warmer axis. So for my statistics for relating CCRT to local environment (to see if they're locally adapted), I used an ANCOVA:

 
CCRT~ pre-treatment temp * Tmin 

This just says whether the relationship between CCRT and Tmin at each pre-treatment temperature are different or not. But what I may want, is an estimate of those relationships. So I should run a regression or mixed effect model to generalize to the whole population.

Mixed effect model with pretreatment * Tmin interaction, random intercept and slope? for every colony measured at each pretreatment temp

 
mod5.r<-lmer(formula=inv_c~pretreat_Temp*Tmin+(1+pretreat_Temp|Colony),REML=TRUE,data=test)

I'll compare this model to:

Mixed effect model with fixed effect of Tmin, random intercept and slope? for every colony measured at each pretreatment temp

 
mod3<-lmer(formula=inv_c~Tmin+(1+pretreat_Temp|Colony),REML=TRUE,data=test)

and also compare it to:

Mixed effect model with fixed effect of Tmin and pretreatment temp, random intercept and slope? for every colony measured at each pretreatment temp

 
mod4<-lmer(formula=inv_c~pretreat_Temp+Tmin+(1+pretreat_Temp|Colony),REML=TRUE,data=test)    

my "comparison" using anova function:

 
refitting model(s) with ML (instead of REML)
Data: test
Models:
mod3: inv_c ~ Tmin + (1 + pretreat_Temp | Colony)
mod2: inv_c ~ pretreat_Temp + (1 + pretreat_Temp | Colony)
mod4: inv_c ~ pretreat_Temp + Tmin + (1 + pretreat_Temp | Colony)
mod5.r: inv_c ~ pretreat_Temp * Tmin + (1 + pretreat_Temp | Colony)
       Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
mod3   13 555.36 602.00 -264.68   529.36                              
mod2   15 544.10 597.91 -257.05   514.10 15.2606      2  0.0004855 ***
mod4   16 543.62 601.02 -255.81   511.62  2.4798      1  0.1153190    
mod5.r 19 540.10 608.26 -251.05   502.10  9.5188      3  0.0231317 *  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1  

mod5.r is stat diff from the other more simple models

Let's look at the output:

 
Linear mixed model fit by REML ['lmerMod']
Formula: inv_c ~ pretreat_Temp * Tmin + (1 + pretreat_Temp | Colony)
   Data: test
REML criterion at convergence: 525.8
Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-1.9347 -0.5625 -0.1789  0.4116  5.4326 
Random effects:
 Groups   Name            Variance Std.Dev. Corr             
 Colony   (Intercept)     0.03646  0.1909                    
          pretreat_Temp0  0.15330  0.3915   -0.23            
          pretreat_Temp25 0.20398  0.4516   -0.92 -0.13      
          pretreat_Temp5  0.26667  0.5164   -0.17 -0.50  0.50
 Residual                 0.32402  0.5692                    
Number of obs: 267, groups:  Colony, 18
Fixed effects:
                     Estimate Std. Error t value
(Intercept)           3.59188    1.03188   3.481
pretreat_Temp0       -2.90454    1.68322  -1.726
pretreat_Temp25      -4.39184    1.80599  -2.432
pretreat_Temp5       -4.47550    1.96022  -2.283
Tmin                  0.11598    0.06922   1.675
pretreat_Temp0:Tmin  -0.23723    0.11283  -2.102
pretreat_Temp25:Tmin -0.28354    0.12088  -2.346
pretreat_Temp5:Tmin  -0.30516    0.13104  -2.329
Correlation of Fixed Effects:
            (Intr) prt_T0 pr_T25 prt_T5 Tmin   p_T0:T p_T25:
pretrt_Tmp0 -0.519                                          
prtrt_Tmp25 -0.770  0.183                                   
pretrt_Tmp5 -0.443 -0.039  0.499                            
Tmin         0.997 -0.517 -0.766 -0.442                     
prtrt_Tm0:T -0.518  0.997  0.184 -0.037 -0.520              
prtrt_T25:T -0.768  0.184  0.997  0.498 -0.770  0.185       
prtrt_Tm5:T -0.443 -0.037  0.498  0.997 -0.445 -0.036  0.500

Considering only the random effect of colony

 
mod2<-lmer(formula=treatment_recovery_s.x~pretreat_Temp+(1|Colony),REML=TRUE,data=test)
mod3<-lmer(formula=treatment_recovery_s.x~Tmin+(1|Colony),REML=TRUE,data=test)
mod4<-lmer(formula=treatment_recovery_s.x~pretreat_Temp+Tmin+(1+pretreat_Temp|Colony),REML=TRUE,data=test)
#mod5.r<-lmer(formula=inv_c~pretreat_Temp*Tmin+(1|Colony),REML=TRUE,data=test)
mod6<-lmer(formula=treatment_recovery_s.x~pretreat_Temp*Tmin+(1|Colony),REML=TRUE,data=test)
anova(mod3,mod4,mod2,mod6)
mod3: treatment_recovery_s.x ~ Tmin + (1 | Colony)
mod2: treatment_recovery_s.x ~ pretreat_Temp + (1 | Colony)
mod4: treatment_recovery_s.x ~ pretreat_Temp + Tmin + (1 | Colony)
mod6: treatment_recovery_s.x ~ pretreat_Temp * Tmin + (1 | Colony)
     Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
mod3  4 3628.0 3642.4 -1810.0   3620.0                              
mod2  6 3583.1 3604.6 -1785.5   3571.1 48.9531      2  2.344e-11 ***
mod4  7 3577.2 3602.3 -1781.6   3563.2  7.8337      1   0.005128 ** 
mod6 10 3564.4 3600.2 -1772.2   3544.4 18.8832      3   0.000289 ***
---

model output for mod6

 
Linear mixed model fit by REML ['lmerMod']
Formula: treatment_recovery_s.x ~ pretreat_Temp * Tmin + (1 | Colony)
   Data: test
REML criterion at convergence: 3649.7
Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.2557 -0.6656 -0.1116  0.4587  3.8248 
Random effects:
 Groups   Name        Variance Std.Dev.
 Colony   (Intercept)   752.9   27.44  
 Residual             33965.8  184.30  
Number of obs: 280, groups:  Colony, 19
Fixed effects:
                     Estimate Std. Error t value
(Intercept)            207.92     291.37   0.714
pretreat_Temp0         439.58     396.48   1.109
pretreat_Temp25       1736.31     395.31   4.392
pretreat_Temp5        1215.86     399.33   3.045
Tmin                   -24.52      19.57  -1.253
pretreat_Temp0:Tmin     39.34      26.65   1.476
pretreat_Temp25:Tmin   109.35      26.52   4.124
pretreat_Temp5:Tmin     79.62      26.73   2.979
Correlation of Fixed Effects:
            (Intr) prt_T0 pr_T25 prt_T5 Tmin   p_T0:T p_T25:
pretrt_Tmp0 -0.678                                          
prtrt_Tmp25 -0.681  0.500                                   
pretrt_Tmp5 -0.674  0.495  0.497                            
Tmin         0.997 -0.676 -0.679 -0.672                     
prtrt_Tm0:T -0.676  0.997  0.498  0.493 -0.678              
prtrt_T25:T -0.680  0.499  0.997  0.496 -0.682  0.501       
prtrt_Tm5:T -0.674  0.496  0.497  0.997 -0.677  0.497  0.499


Page 57: 2016-08-25. Hsp modulation follow up stats

summary(aov(log10(B_40)~axis3_desig,data=mergy))
        Df Sum Sq Mean Sq F value   Pr(>F)    
axis3_desig  3  4.947  1.6490   7.154 0.000413 ***
Residuals   52 11.986  0.2305                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

I separated out groupings based on phylogenetic axes. The model anova is significant.

Now I'll do a post hoc test.

TukeyHSD(aov(log10(B_40)~axis3_desig,data=mergy))

    diff        lwr        upr     p adj
North-A. picea             0.1185330 -0.3739818  0.6110478 0.9189644
South-A. picea            -1.0921848 -1.7596714 -0.4246982 0.0003710
zAxis 2 A. picea-A. picea  0.2516912 -0.5104439  1.0138263 0.8169654
South-North               -1.2107178 -1.9910398 -0.4303958 0.0007709
zAxis 2 A. picea-North     0.1331582 -0.7295202  0.9958366 0.9765503
zAxis 2 A. picea-South     1.3438760  0.3706435  2.3171085 0.0031663


Page 58: 2016-08-29 & 30. Climate cascade meeting

  1. Project updates:
  • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

  • Multiple stressors ms: working on SHC edits

    • Send out Wednesday.
  • Range limits ms: Go over figure; SHC has ms; eta? Not looked at it.

    • sampling map: make larger, points should be gray; sites that were used for common garden should have a gold outline
    • fig 6, cold phys; get rid of "cold", use different words.
  • Thermal niche ms: Lacey and I working on discussion

  • HSP modulation paper: SHC submitted

  • Stressed in nature MS: Samples to rerun.

    • update: Curtis can no longer work+ write on project
    • in reference to missing samples
    • Fit in time to process Curtis' samples.
The DF 20140717 sample box was found when we dug through all the freezers
in the winter and I didn't have time to extract RNA and qPCR them all. 
The HF 20140812 box was the box we weren't able to find anywhere.

There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.

  • Genome sequencing? Mlau's hands
  • Phylogenomics of common forest ants: status?
  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • construct talk; when to give practice talk ?
  • Apply for funding. Suitor Travel Grant Deadline is october 31

    • Wrote up suiter award app. I need to find out pricing and then get everything signed.
  • Biolunch, working title: Strategies for achieving reproducible research Sept 2nd.



Page 59: 2016-09-01. SHC lab meeting Fall 2016

RoomDateActivityPerson.in.ChargeBreakfast
124Sept. 8IDPsSaraSara
124Sept. 15American Naturalist paperSaraMegna
122Sept. 22Experimental designMegnaKatie
124Sept. 29Manuscript - A. picea range limitsAndrewLaurel
124Oct. 6Proposal - NSF post-doc fellowshipAndrewDelaney
124Oct. 13Experimental designJuliaJulia
122Oct. 20Research updateBonnieBonnie
124Oct. 27Results presentationDelaneyDelaney
124Nov. 3Paper discussionLaurelSara
124Nov. 10Results discussionLaurelLaurel
122Nov. 17Manuscript - CNP in AphaenogasterKatieBonnie
NA24-NovThanksgiving
124Dec. 1Meeting talk - range limitsAndrewSara
124Dec. 8Dimensions of Biodiversity new papers!!!EveryoneAndrew

Note dietary requirements for breakfasts:

  • Dairy-free options
  • No coconut
  • No nuts in baked goods
  • No honeydew melon

Including notes from meeting (added 2016-09-02)

  • LSO needs to check monthly eye wash, chemical inventory, lab safety
  • Do your lab safety training.

Tuesday morning (2016-09-06): Schedule time to look for ants, collect ~ 20.



2016-09-01: Paper notes: Paccard et al. 2016

ref: Paccard A, Van Buskirk J, Willi Y, Eckert CG, Bronstein JL. 2016. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence. The American Naturalist.

Quick and dirty: They compared variance-covariance G matrices among 9 populations in a Arabdopsis species that spans a cline. It was in a common garden with 2 levels of moisture treatments.

Findings:

  • Genetic variance washighest at the middle of their range and lowest at the edges (south and north)
  • More trait indepdence at the northern part of their range

Making sense of the properties of G

Confusing sentence in methods: *We calculated four measures of multivariate evolutionary potential and G-matrix geometry (size, sphericity, and orientation) for each treatment and population.*

Separate or the same item?

  1. Size: sum of genetic variances across all traits. I guess this means the total amount of genetic variance.
  2. Sphericity = # of dimensions: Sum of all eigenvalues / first eigenvalue. It tells you how independent traits are. If it is 1 then gmax or the first pc explains most of the variation. But if it is a high number (# of dimensions of G), then it tells you many traits are independent and variances are distributed among traits. It can also tell you whether genetic constraints exist in certain directions without specifying direction
  3. Orientation of G relative to common standard vector: Compare dmax (dominant eigenvector of variance-covariance matrix of population means for 10 traits across the 9 populations--- D matrix describes population divergence ). For each population they meaured the orientation as the absolute value of the angle between dmax and gmax.
  4. Response to selection: Random skewers method: THey calculate change in phenotype by simulating Betas in the delta Z = G * Beta


Page 61: 2016-09-06. Playing with rpart with range limit data

Using bioclim variables to classify presence-absence

Guidance for picking "best" tree

  • Convention is to pick one with the lowest cross-validate relative error or smallest(simplest) tree within 1 standard error of best tree

Full dataset layout

 
str(dbio2)
'data.frame':   102 obs. of  38 variables:
 $ n             : int  1 2 3 4 5 6 7 8 9 10 ...
 $ date          : int  19960507 20140709 20140709 20140710 20050625 20030715 20050625 20130718 19910901 20050630 ...
 $ state         : Factor w/ 1 level "Maine": 1 1 1 1 1 1 1 1 1 1 ...
 $ county        : Factor w/ 23 levels "","cumberland",..: 23 2 8 8 6 6 6 21 7 6 ...
 $ locality      : Factor w/ 84 levels "","18-LP-4C",..: 81 42 17 17 6 3 4 76 61 67 ...
 $ habitat       : Factor w/ 12 levels "","  ","Behind dining hall",..: 11 8 5 6 NA NA NA 3 12 NA ...
 $ Lat           : num  43.6 43.9 43.9 43.9 44.3 ...
 $ Lon           : num  -70.8 -70.2 -69.7 -69.7 -68.3 ...
 $ masl          : num  158 NA NA NA 68 100 230 NA NA 105 ...
 $ subfamily     : Factor w/ 2 levels "","Myrmicinae": 2 2 2 2 2 2 2 2 2 2 ...
 $ ant.genus     : Factor w/ 2 levels "","Aphaenogaster": 2 2 2 2 2 2 2 2 2 2 ...
 $ ant.species   : Factor w/ 2 levels "","picea": 2 2 2 2 2 2 2 2 2 2 ...
 $ code          : Factor w/ 2 levels "","aphpic": 2 2 2 2 2 2 2 2 2 2 ...
 $ collection    : Factor w/ 75 levels "","Aaron","AcadiaNP",..: 5 1 4 1 3 3 3 1 6 7 ...
 $ collector     : Factor w/ 11 levels "Aaron","Acadia BioBlitz",..: 10 3 3 3 8 2 8 4 10 9 ...
 $ Found_Notfound: int  1 1 1 1 1 1 1 1 1 1 ...
 $ MAT           : num  7 7.6 7.8 7.8 6.9 6.6 6.3 6.6 6.6 6.8 ...
 $ MDR           : num  129 108 105 105 107 107 106 109 124 110 ...
 $ ISO           : num  32 28 28 28 28 28 28 29 30 28 ...
 $ SD            : num  94.2 92.7 90.5 90.5 90.7 ...
 $ Tmax          : num  27.1 26.3 26 26 25.5 25.2 24.8 24.9 27.1 25.9 ...
 $ Tmin          : num  -132 -115 -107 -107 -117 -121 -123 -120 -142 -125 ...
 $ TAR           : num  403 378 367 367 372 373 371 369 413 384 ...
 $ TWQ           : num  24 33 37 37 -22 -25 -28 -23 20 25 ...
 $ TDQ           : num  179 186 192 192 183 180 177 177 -53 186 ...
 $ TwarmQ        : num  188 193 192 192 183 180 177 177 189 186 ...
 $ TminQ         : num  -57 -47 -42 -42 -52 -56 -59 -54 -66 -58 ...
 $ AP            : num  1195 1146 1157 1157 1261 ...
 $ PWM           : num  131 123 125 125 144 148 150 140 110 127 ...
 $ PDM           : num  86 79 76 76 78 79 81 77 69 81 ...
 $ PSD           : num  12 13 14 14 17 18 18 17 11 14 ...
 $ PWQ           : num  349 335 341 341 388 401 407 385 301 343 ...
 $ PDQ           : num  267 244 244 244 245 250 256 245 231 248 ...
 $ PwarmQ        : num  275 248 244 244 245 250 256 245 268 248 ...
 $ PminQ         : num  293 293 297 297 342 354 359 340 240 294 ...
 $ var           : Factor w/ 2 levels "absent","present": 2 2 2 2 2 2 2 2 2 2 ...
 $ color         : chr  "red" "red" "red" "red" ...
 $ coco          : chr  "red" "red" "red" "red" ...

All bioclim variables

knitr::kable(round(cor(dbio2[17:35]),3))
MATMDRISOSDTmaxTminTARTWQTDQTwarmQTminQAPPWMPDMPSDPWQPDQPwarmQPminQ
MAT1.000-0.2730.352-0.6370.6630.876-0.512-0.7400.6200.8520.9480.5600.5980.769-0.2650.4950.793-0.8780.684
MDR-0.2731.0000.5410.7870.483-0.6740.9130.137-0.7220.168-0.519-0.606-0.647-0.437-0.587-0.733-0.3990.525-0.678
ISO0.3520.5411.000-0.0470.5370.1040.179-0.387-0.0270.4020.2490.1190.0600.218-0.470-0.0400.303-0.1270.072
SD-0.6370.787-0.0471.0000.133-0.9160.9670.526-0.859-0.143-0.848-0.836-0.843-0.717-0.341-0.861-0.7240.771-0.898
Tmax0.6630.4830.5370.1331.0000.2290.299-0.506-0.0310.9390.398-0.056-0.0150.344-0.700-0.1800.364-0.3950.041
Tmin0.876-0.6740.104-0.9160.2291.000-0.860-0.6490.8450.5110.9800.7710.8090.8180.1060.7750.826-0.9160.884
TAR-0.5120.9130.1790.9670.299-0.8601.0000.371-0.844-0.009-0.752-0.785-0.800-0.622-0.471-0.854-0.6190.692-0.844
TWQ-0.7400.137-0.3870.526-0.506-0.6490.3711.000-0.452-0.589-0.714-0.577-0.586-0.7210.258-0.466-0.7120.740-0.671
TDQ0.620-0.722-0.027-0.859-0.0310.845-0.844-0.4521.0000.2320.7830.8060.8470.7410.4010.8480.709-0.7560.878
TwarmQ0.8520.1680.402-0.1430.9390.511-0.009-0.5890.2321.0000.6460.1680.2180.526-0.5610.0700.548-0.6130.285
TminQ0.948-0.5190.249-0.8480.3980.980-0.752-0.7140.7830.6461.0000.7300.7600.824-0.0370.6970.845-0.9180.840
AP0.560-0.6060.119-0.836-0.0560.771-0.785-0.5770.8060.1680.7301.0000.9570.7310.3810.9550.783-0.6320.941
PWM0.598-0.6470.060-0.843-0.0150.809-0.800-0.5860.8470.2180.7600.9571.0000.7990.4240.9760.799-0.7330.971
PDM0.769-0.4370.218-0.7170.3440.818-0.622-0.7210.7410.5260.8240.7310.7991.000-0.1170.6950.966-0.8560.856
PSD-0.265-0.587-0.470-0.341-0.7000.106-0.4710.2580.401-0.561-0.0370.3810.424-0.1171.0000.560-0.1570.0310.310
PWQ0.495-0.733-0.040-0.861-0.1800.775-0.854-0.4660.8480.0700.6970.9550.9760.6950.5601.0000.707-0.6490.940
PDQ0.793-0.3990.303-0.7240.3640.826-0.619-0.7120.7090.5480.8450.7830.7990.966-0.1570.7071.000-0.8030.847
PwarmQ-0.8780.525-0.1270.771-0.395-0.9160.6920.740-0.756-0.613-0.918-0.632-0.733-0.8560.031-0.649-0.8031.000-0.835
PminQ0.684-0.6780.072-0.8980.0410.884-0.844-0.6710.8780.2850.8400.9410.9710.8560.3100.9400.847-0.8351.000

rpart predictive model: full bioclim

 
vars<-as.data.frame(cbind(dbio2[,17:35],V1=dbio2[,36])) #all bioclim variables
form<-as.formula(V1~.)
tree.1<-rpart(form,data=vars,control=rpart.control(minsplit=20,cp=0),method="class")
printcp(tree.1)
plotcp(tree.1)
rpart.plot(tree.1,type=3,extra=100)

classification tree
Table statistics of model:

CPnsplitrel errorxerrorxstd
0.4201.001.260.0981595
0.1210.580.820.0990346
0.0620.460.760.0976589
0.0050.280.660.0944956

model accuracy

 
m<-predict(tree.1,vars[-20])
m.pre<-ifelse(m[,1]< m[,2],"present","absent")
#confusion matrix
#following this tutorial
#http://eric.univ-lyon2.fr/~ricco/tanagra/fichiers/en_Tanagra_Validation_Croisee_Suite.pdf
mc<-table(vars$V1,m.pre);mc
sum(ifelse(vars$V1== m.pre,1,0))/nrow(vars)

Confusion matrix indicating 86.2% accuracy:

absentpresent
absent428
present646

Subset of bioclim variables:

 
sub<-data.frame(cbind(dbio2$MAT,dbio2$Tmin,dbio2$SD,dbio2$TAR,dbio2$ISO,dbio2$MDR,dbio2$AP,dbio2[,31]))
names(sub)<-c("MAT","Tmin","SD","TAR","ISO","MDR","AP","PSD")
knitr::kable(round(cor(sub),3))
MATTminSDTARISOMDRAPPSD
MAT1.0000.876-0.637-0.5120.352-0.2730.560-0.265
Tmin0.8761.000-0.916-0.8600.104-0.6740.7710.106
SD-0.637-0.9161.0000.967-0.0470.787-0.836-0.341
TAR-0.512-0.8600.9671.0000.1790.913-0.785-0.471
ISO0.3520.104-0.0470.1791.0000.5410.119-0.470
MDR-0.273-0.6740.7870.9130.5411.000-0.606-0.587
AP0.5600.771-0.836-0.7850.119-0.6061.0000.381
PSD-0.2650.106-0.341-0.471-0.470-0.5870.3811.000

Classification tree with subset of bioclim

 
vars<-as.data.frame(cbind(sub,V1=dbio2[,36]))
#names(vars)[1]<-"V1"
form<-as.formula(V1~.)
tree.1<-rpart(form,data=vars,control=rpart.control(minsplit=20,cp=0),method="class")
printcp(tree.1)
plotcp(tree.1)
rpart.plot(tree.1,type=3,extra=100)

output of classification tree

Table statistics of model:

CPnsplitrel errorxerrorxstd
0.3801.001.240.0986179
0.1410.621.000.1009756
0.0420.480.840.0994100
0.0260.320.660.0944956
0.0070.300.520.0880285

model accuracy

 
m<-predict(tree.1,vars[-9])
m.pre<-ifelse(m[,1]< m[,2],"present","absent")
knitr::kable(mc)

Confusion matrix indicating 85.2% accuracy

absentpresent
absent464
present1141


Page 62: 2016-09-06. Climate cascade meeting

  1. Project updates:
  • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

  • Multiple stressors ms:

    • SHC hands
  • Range limits ms: Aaron made comments, go over with Nick

  • Thermal niche ms: Lacey and I working on discussion

  • Stressed in nature MS: Samples to rerun.

    • update: Curtis can no longer work+ write on project
    • in reference to missing samples
    • Fit in time to process Curtis' samples.

There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • construct talk; when to give practice talk ?
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing and then get everything signed.

Notes: Only NJG and ANBE in attendance.

  • Go over thesis layout next time


Page 63: 2016-09-07. PCA update for range limit data ; see * Page 63: 2016-09-07. PCA update for range limit data

Aaron wants to explore PCA decomposition of bioclim variables

PCA of all bioclim

 
nm<-princomp(scale(dbio2[,17:35]))
knitr::kable(round(nm$loadings[,1:4],3))

Table of loadings

Comp.1Comp.2Comp.3Comp.4
MAT0.238-0.2420.191-0.079
MDR-0.192-0.307-0.3470.086
ISO0.037-0.309-0.614-0.515
SD-0.267-0.1240.0000.393
Tmax0.052-0.4510.0990.239
Tmin0.281-0.0260.184-0.206
TAR-0.248-0.211-0.1290.327
TWQ-0.2050.2130.151-0.155
TDQ0.2590.1110.0340.002
TwarmQ0.128-0.3890.2470.209
TminQ0.274-0.1120.140-0.205
AP0.2580.103-0.3240.158
PWM0.2680.100-0.2300.275
PDM0.259-0.108-0.0460.164
PSD0.0520.413-0.1070.240
PWQ0.2560.180-0.2150.198
PDQ0.259-0.124-0.1220.075
PwarmQ-0.2630.107-0.228-0.014
PminQ0.2820.065-0.1300.143

Screeplot of PCA of all bioclim vars

Variance explained

summary(nm)
Importance of components:
                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5
Standard deviation     3.4169139 2.0868333 1.00881816 0.72270248 0.71067369
Proportion of Variance 0.6205736 0.2314732 0.05409423 0.02776159 0.02684514
Cumulative Proportion  0.6205736 0.8520468 0.90614101 0.93390259 0.96074773

PC1 explains 62%, PC2 explains 23%, PC3 explains 5%.

Statistical analysis: Using logistic regression, glm() function for first 3 PCs

 
dmo1<-glm(dbio2$Found_Notfound~pca.clim[,1]+pca.clim[,2]+pca.clim[,3],family="binomial")
summary(dmo1)
 Call:
glm(formula = dbio2$Found_Notfound ~ pca.clim[, 1] + pca.clim[, 
    2] + pca.clim[, 3], family = "binomial")
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6588  -0.9896   0.3712   0.9299   2.3119  
Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -0.11715    0.24828  -0.472  0.63702    
pca.clim[, 1]  0.23114    0.08479   2.726  0.00641 ** 
pca.clim[, 2] -0.57836    0.15037  -3.846  0.00012 ***
pca.clim[, 3] -0.19877    0.24715  -0.804  0.42126    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 141.36  on 101  degrees of freedom
Residual deviance: 112.62  on  98  degrees of freedom
AIC: 120.62
Number of Fisher Scoring iterations: 5
#more digestable table
knitr::kable(round(summary(dmo1)$coefficients,3))

Table output of logistic regression

EstimateStd. Errorz valuePr(>|z|)
(Intercept)-0.1170.248-0.4720.637
pc10.2310.0852.726** 0.006**
pc2-0.5780.150-3.8460.000
pc3-0.1990.247-0.8040.421

Overlaying presence-absence onto climate space as represented by PCs

Aaron's thoughts

Hi Andrew,
 
The scree plot suggests both PC1 and maybe PC2, not definitely not PC3 are useful. The GLM supports this.
 
The loadings on PC2 are clear: MDR, ISO, Tmax, TwarmQ, PSD, none of which load heavily on PC1
 
But the loadings on PC1 are a mess. None exceed 0.3 in loading, and the 0.2-0.3 (absolute values) are: MAT, SD, Tmin, TAR, TDQ, TminQ, AP, PWM, PDM, PDQ, PWarmQ, and PminQ.
 
Looks to me like a lot of min temps and precip on PC1 and maxima on PC2, but I don’t know my bioclim vars.
 
But the “bowing” on the biplot is a common problem when you have more than 1 env. gradient working in the data that are working at cross-purposes. Which you described in text, and which you get out of the regression (or classification) tree (which I did get backwards – it’s about the predictee, not the predictors, but not both).
 
So my suggestion would be to stick with the CART analysis. If you must do a GLM, you should only work with uncorrelated BioClim vars. You’ll just have to choose the set a priori and defend it.
 
Best,
Aaron




<<<<<<< HEAD

Page 65:2016-09-12. variable importance

Online tutorial

Youtube version




Page 66: 2016-09-13. climate cascade meeting

  1. Project updates:
  • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

  • Multiple stressors ms:

    • my hands, need to edit and send out by wednesday/thursday
  • Range limits ms: SHC's hands

  • Thermal niche ms: Lacey and I working on discussion

  • Stressed in nature MS: Samples to rerun.

    • update: Curtis can no longer work+ write on project
    • in reference to missing samples
    • Fit in time to process Curtis' samples.

There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing and then get everything signed.
  • Go over thesis layout next time

    • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agreee


Page 68: 2016-09-14. SICB meeting

Venue: Hilton New Orleans Riverside

Address: Two Poydras Street, New Orleans, LA 70130, UNITED STATES

Closest airport: Louis Armstrong New Orleans Airport.

27 minutes away from hilton but there is discounted round trip airport trans: $40/person

Budget:

  • $40 transportation (put 32 in budget)
  • $388 flight
  • $580 + taxes and fees hotel
  • $ 99 registration to SICB


Page 68: 2016-09-19; 2016-09-20. Climate cascade meeting

  1. Project updates:

    • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

    • Multiple stressors ms:

      • sent to SHC 2016-09-16
    • Range limits ms: SHC's hands

    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • in reference to missing samples
      • Fit in time to process Curtis' samples.
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: ETA end of the week (5/6 done)

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
  • Go over thesis layout next time

    • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
    • Abstract? I have one written up for NSF post doc fellowship


Page 69: 2016-09-21. qpcr redos for 18s rRNA

Table of colonies with unstable HSG as determined by linear regression (18s ~ Temp).

colonyDfSSMSFp_value
5ALA112123420.912123420.918.0549250.0218751
9Avon19-1185577.0285577.025.6590130.0446244
15CJ21860194.07860194.0726.9440170.0008317
55GF34-119742336.469742336.4645.4495740.0001463
85LPR412802821.862802821.8614.9405840.0047729

others: Yates3, Duke8



Page 70: 2016-09-26. selecting poplar clones

Overall goal: Make a map highlighting climate gradient and plotting potential sites to select clones from. The magnitiude of the points will relate to the GSL.

General workflow

  1. Grab climate data and plot all sites
  2. Link previous dataset to a another dataset that has empirical GSL from either IH or Burlington.
  3. Make map

Climate data


Looks like PC1 (~55%) represents preicipitation to temperature seasonality axis and PC2 (19%) represents precipitation to overall temperature axis.

All possible sites


Subsetted sites

Looks like IH has both BF and BS data but Burlington doesn't


range of GSLs: 2.016667-4.833333 months

Table for previous fig

PopCodeGSLBSBFmonths
CBI84.20000200.9000116.70002.806667
CLK62.00000183.8889121.88892.066667
CPL67.57143190.3571122.78572.252381
CYP61.85714184.8571123.00002.061905
FIS77.80000194.0000116.20002.593333
FNO70.11111181.0000110.88892.337037
GAM64.76000186.6400121.88002.158667
HWK68.80000189.8500121.05002.293333
KAP68.75000193.3125124.56252.291667
KEN145.00000256.6000111.60004.833333
LLC136.95000248.1500111.20004.565000
LON91.72727208.7273117.00003.057576
MBK61.77778182.3333120.55562.059259
NBY91.23529210.4706119.23533.041177
NEG76.88636195.6591118.77272.562879
OUT69.40000188.1000118.70002.313333
RAD63.77778181.7037117.92592.125926
SKN63.38462184.8462121.46152.112821
TBY137.60000250.1333112.53334.586667
TUR63.40000186.5000123.10002.113333
UMI61.00000182.0000121.00002.033333
WLK60.50000175.0000114.50002.016667



Page 71: 2016-09-26 and 2016-09-27. Climate cascade meeting

  1. Project updates:

    • Gene expression project: on hold; focusing on 2 manuscripts (multiple stressors and range limits ms)

      • Present some analyses
    • Multiple stressors ms:

      • Working on SHC edits
    • Range limits ms: SHC lab meeting to go over Thursday September 29th

    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • in reference to missing samples
      • Fit in time to process Curtis' samples.
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: ETA end of the week (5/6 done); database searching

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
  • Thesis related

    • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
    • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph


Page 72: 2016-09-27. evolution of hsp gxp data analysis

Exploring different approaches

  1. PCA decomp bioclim variables I think a priori are important and using that in regression vs. just bio5(Tmax)
  2. And then building a global model with predictors I think are important (a priori) vs constructing a fully complex model.

Exploring hsp gxp parameters from boltzmann fits

Table of correlation between params

FC_hsc701468maxFC_hsc701468slopeFC_hsc701468TmFC_hsp40541maxFC_hsp40541slopeFC_hsp40541TmFC_Hsp83279maxFC_Hsp83279slopeFC_Hsp83279Tm
FC_hsc701468max1.0000.5690.6420.3980.1040.0760.029-0.122-0.207
FC_hsc701468slope0.5691.0000.6400.3400.1890.174-0.154-0.079-0.297
FC_hsc701468Tm0.6420.6401.0000.4290.2070.401-0.130-0.124-0.264
FC_hsp40541max0.3980.3400.4291.0000.6020.6240.0300.117-0.082
FC_hsp40541slope0.1040.1890.2070.6021.0000.6510.0370.122-0.129
FC_hsp40541Tm0.0760.1740.4010.6240.6511.000-0.247-0.075-0.215
FC_Hsp83279max0.029-0.154-0.1300.0300.037-0.2471.0000.7560.669
FC_Hsp83279slope-0.122-0.079-0.1240.1170.122-0.0750.7561.0000.864
FC_Hsp83279Tm-0.207-0.297-0.264-0.082-0.129-0.2150.6690.8641.000

It doesn't have basal gxp; including basal and then doing a pca:

 
 Comp.1    Comp.2    Comp.3    Comp.4     Comp.5     Comp.6     Comp.7     Comp.8    Comp.9    Comp.10
Standard deviation     2.0502371 1.4176264 1.2325728 1.1396205 0.84813044 0.74749858 0.68915615 0.60025005 0.4704591 0.36055794
Proportion of Variance 0.3612359 0.1727056 0.1305593 0.1116100 0.06181701 0.04801793 0.04081483 0.03096329 0.0190207 0.01117205
Cumulative Proportion  0.3612359 0.5339415 0.6645008 0.7761108 0.83792784 0.88594577 0.92676060 0.95772389 0.9767446 0.98791664
                           Comp.11     Comp.12
Standard deviation     0.294315885 0.232345681
Proportion of Variance 0.007444064 0.004639294
Cumulative Proportion  0.995360706 1.000000000
Comp.1Comp.2Comp.3Comp.4
hsc700.3660.117-0.041-0.400
hsp830.2710.019-0.238-0.414
hsp400.1410.309-0.279-0.433
FC_hsc701468max0.284-0.0060.529-0.184
FC_hsc701468slope0.3130.1120.318-0.110
FC_hsc701468Tm0.300-0.0630.4950.234
FC_hsp40541max0.210-0.5020.039-0.185
FC_hsp40541slope0.153-0.521-0.264-0.048
FC_hsp40541Tm0.232-0.493-0.1750.173
FC_Hsp83279max-0.321-0.1740.305-0.324
FC_Hsp83279slope-0.355-0.2490.168-0.366
FC_Hsp83279Tm-0.392-0.1240.124-0.276

some stats with pcas of hsp gxp params to see how much it explains CTmax

 
summary(lm(h$KO_temp_worker~paramspc$scores[,1]+paramspc$scores[,2]+paramspc$scores[,3]+paramspc$scores[,4]))
Call:
lm(formula = h$KO_temp_worker ~ paramspc$scores[, 1] + paramspc$scores[, 
    2] + paramspc$scores[, 3] + paramspc$scores[, 4])
Residuals:
     Min       1Q   Median       3Q      Max 
-0.90448 -0.46768  0.02901  0.40598  1.08398 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          41.61667    0.10803 385.219  < 2e-16 ***
paramspc$scores[, 1]  0.15861    0.05269   3.010  0.00548 ** 
paramspc$scores[, 2] -0.04312    0.07621  -0.566  0.57600    
paramspc$scores[, 3]  0.40672    0.08765   4.640 7.41e-05 ***
paramspc$scores[, 4]  0.05244    0.09480   0.553  0.58451    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.6206 on 28 degrees of freedom
Multiple R-squared:  0.5272,    Adjusted R-squared:  0.4596 
F-statistic: 7.805 on 4 and 28 DF,  p-value: 0.0002339

Mistake: I didnt control for housekeeping gene in basal gxp. redo

 
h<-read.csv("20160927_total_dataset_curated.csv")
basalxp<-h[,4:6]-h[,3]
paramspc<-princomp(scale(cbind(basalxp,h[,7:15])))
summary(paramspc)
Importance of components:
                          Comp.1    Comp.2    Comp.3    Comp.4     Comp.5
Standard deviation     1.8681865 1.5167796 1.3456615 1.1162675 0.86282525
Proportion of Variance 0.3002255 0.1979028 0.1557682 0.1071874 0.06404021
Cumulative Proportion  0.3002255 0.4981283 0.6538964 0.7610838 0.82512400
                           Comp.6     Comp.7     Comp.8     Comp.9
Standard deviation     0.82407918 0.71977398 0.55118644 0.45902754
Proportion of Variance 0.05841776 0.04456556 0.02613389 0.01812527
Cumulative Proportion  0.88354177 0.92810732 0.95424121 0.97236649
                          Comp.10     Comp.11     Comp.12
Standard deviation     0.39039533 0.304603562 0.275767584
Proportion of Variance 0.01311041 0.007981362 0.006541743
Cumulative Proportion  0.98547690 0.993458257 1.000000000
knitr::kable(round(paramspc$loadings[,1:4],3))
Comp.1Comp.2Comp.3Comp.4
hsc70-0.3380.071-0.410-0.299
hsp83-0.2750.237-0.295-0.234
hsp40-0.0980.057-0.476-0.391
FC_hsc701468max-0.316-0.3580.172-0.246
FC_hsc701468slope-0.195-0.3600.211-0.172
FC_hsc701468Tm-0.289-0.3470.253-0.044
FC_hsp40541max-0.4140.1770.1470.127
FC_hsp40541slope-0.3100.265-0.0870.461
FC_hsp40541Tm-0.3480.3040.0810.313
FC_Hsp83279max-0.3900.0760.292-0.183
FC_Hsp83279slope0.0530.4390.418-0.286
FC_Hsp83279Tm0.1930.4060.290-0.410

Stats

 
summary(stepAIC(lm(h$KO_temp_worker~paramspc$scores[,1]+paramspc$scores[,2]+paramspc$scores[,3]+paramspc$scores[,4]),direction="both"))
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          41.62969    0.12246 339.931  < 2e-16 ***
paramspc$scores[, 1] -0.17806    0.06555  -2.716  0.01119 *  
paramspc$scores[, 2] -0.23931    0.08074  -2.964  0.00614 ** 
paramspc$scores[, 3]  0.15733    0.09101   1.729  0.09486 .  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.6928 on 28 degrees of freedom
Multiple R-squared:  0.4062,    Adjusted R-squared:  0.3425 
F-statistic: 6.384 on 3 and 28 DF,  p-value: 0.00196



Page 73: 2016-09-28. building ultrametric trees

I need to build ultrametric trees to do phylogenetic analyses. They need to be ultrametric to meet the assumptions of Homoscedasticity. I'll be using BEAST 2.3.1. And I'll build 2 types; 1 with BL differences across whole phylogeny and another with species as polytomies.

  1. I created a new folder in /Data/Phylogenetics/20160928_beast

  2. It has 2 newick files: 20160927phylogeny_aphaeno_BL_species.newick and 20160927phylogeny_aphaeno_BL.newick

    • 20160927phylogeny_aphaeno_BL.newick has BL for each colony, and I previously added CJ10, LPR4, and Bing in there; so I have to take them out because there is no sequence data for those samples. New file: 20160927phylogeny_aphaeno_BL_none.newick
  3. It also has this fasta file that was previously parsed: 20160516_Andrew_SNP_sequences.fas

  4. In downstream analyses, I got rid of novomessor which I'll do for this fasta too. New file: 20160516_Andrew_SNP_sequences_nonov.fas

I'll use BEAST on cipres, but I'll need to set up Beauti which sets up the input for BEAST.

The two trees:

Pop level

species

Yes, so you can't put tree information into a beast analysis I dont think. Anyway, here are the settings:

NOte Need to convert fasta into nexus file in order for beauti to read as nucleotide, otherwise it'll read it as amino acids**

  1. 1 partition,(1 SNP matrix)
  2. tip dates specified as year and before the present
  3. gammer site model, GTR+gamma
  4. Relaxed clock log normal
  5. priors: ingropu = aphaenogaster, outgroup= veromessor; ucldMean set as mean = 50, sigma = 5 based on fossil data
  6. MCMC chain length = 100,000,000

Cannot get it to work. YULE model best for species. But I have pop and species.



Page 74: 2016-09-28. phylogenetic regressions (PGLS) and anovas

Did PGLS in 3 ways:

  1. untransformed BL
  2. transformed for all tips
  3. forced polytomies for species

1. untransformed BL

PGLS 1. untransformed BL

 
pgmod<-gls(KO_temp_worker~ bio5*habitat_v2, correlation = corBrownian(phy = aph_onlytree),data = aph_phylo, method = "ML")
summary(pgmod)
Generalized least squares fit by maximum likelihood
  Model: KO_temp_worker ~ bio5 * habitat_v2 
  Data: aph_phylo 
      AIC      BIC   logLik
  289.458 302.4838 -139.729
Correlation Structure: corBrownian
 Formula: ~1 
 Parameter estimate(s):
numeric(0)
Coefficients:
                             Value Std.Error   t-value p-value
(Intercept)               39.60864   3.41576 11.595866  0.0000
bio5                       0.00663   0.00968  0.685406  0.4947
habitat_v2flat woods       9.03418  50.92693  0.177395  0.8596
bio5:habitat_v2flat woods -0.02718   0.15809 -0.171921  0.8639
 Correlation: 
                          (Intr) bio5   hbt_2w
bio5                      -0.870              
habitat_v2flat woods      -0.017  0.041       
bio5:habitat_v2flat woods  0.016 -0.042 -1.000
Standardized residuals:
        Min          Q1         Med          Q3         Max 
-1.52993175 -0.23380594 -0.04718187  0.06754746  0.45099889 
Residual standard error: 2.995514 
Degrees of freedom: 100 total; 96 residual

Phyl ANOVA 1. untransformed BL

 
phlaov<-phylANOVA(aph_onlytree,aph_phylo$habitat_v2,aph_phylo$KO_temp_worker,p.adj="hochberg")
phlaov
$F
[1] 49.0392
$Pf
[1] 0.135
$T
                 deciduous forest flat woods
deciduous forest         0.000000  -7.002799
flat woods               7.002799   0.000000
$method
[1] "hochberg"
$Pt
                 deciduous forest flat woods
deciduous forest            1.000      0.135
flat woods                  0.135      1.000

2. transformed for all tips

PGLS 2. transformed for all tips

 
ult.tree1<-compute.brlen(aph_onlytree)
plot(ult.tree1,cex=.5)
aph_phylo1<-ant_dat_clim[match(ult.tree1$tip.label,ant_dat_clim$colony.id2),]
pgmod1<-gls(KO_temp_worker~ bio5*habitat_v2, correlation = corBrownian(phy = ult.tree1),data = aph_phylo1, method = "ML")
summary(pgmod1)
Generalized least squares fit by maximum likelihood
  Model: KO_temp_worker ~ bio5 * habitat_v2 
  Data: aph_phylo1 
       AIC      BIC   logLik
  335.9159 348.9418 -162.958
Correlation Structure: corBrownian
 Formula: ~1 
 Parameter estimate(s):
numeric(0)
Coefficients:
                             Value Std.Error   t-value p-value
(Intercept)               39.94706   4.77385  8.367890  0.0000
bio5                       0.00486   0.01258  0.386220  0.7002
habitat_v2flat woods      14.08505  51.06703  0.275815  0.7833
bio5:habitat_v2flat woods -0.04342   0.15883 -0.273386  0.7851
 Correlation: 
                          (Intr) bio5   hbt_2w
bio5                      -0.806              
habitat_v2flat woods      -0.008  0.025       
bio5:habitat_v2flat woods  0.008 -0.025 -1.000
Standardized residuals:
         Min           Q1          Med           Q3          Max 
-0.836519826 -0.092391337  0.004278385  0.080275482  0.347423662 
Residual standard error: 5.332277 
Degrees of freedom: 100 total; 96 residua

PHYLO ANOVA 2. transformed for all tips

 
phlaov2<-phylANOVA(ult.tree1,aph_phylo$habitat_v2,aph_phylo$KO_temp_worker,p.adj="hochberg")
phlaov2
$F
[1] 49.0392
$Pf
[1] 0.234
$T
                 deciduous forest flat woods
deciduous forest         0.000000  -7.002799
flat woods               7.002799   0.000000
$method
[1] "hochberg"
$Pt
                 deciduous forest flat woods
deciduous forest            1.000      0.234
flat woods                  0.234      1.000

3. forced polytomies for species


PGLS 3. forced polytomies for species

 
plot(aph_onlytree)
nodelabels(cex=.5)
ant_tree_root1<-collapse.to.star(ant_tree_root,192) # flor
ant_tree_root2<-collapse.to.star(ant_tree_root1,184) #ash
ant_tree_root3<-collapse.to.star(ant_tree_root2,158) #picea
ant_tree_root4<-collapse.to.star(ant_tree_root3,131)# rudis
ant_tree_root5<-collapse.to.star(ant_tree_root4,119) # miamiana
ant_tree_root6<-collapse.to.star(ant_tree_root5,116) #lamellidens
ant_tree_root7<-collapse.to.star(ant_tree_root6,104) # fulva
ant_tree_root8<-collapse.to.star(ant_tree_root7,103) # tenn
#ant_tree_root9<-collapse.to.star(ant_tree_root8) # outgroup
plot(ant_tree_root8)
ult2.tree<-compute.brlen(ant_tree_root8)
plot(ult2.tree)
aph_phylo2<-ant_dat_clim[match(ult2.tree$tip.label,ant_dat_clim$colony.id2),]
pgmod2<-gls(KO_temp_worker~bio5*habitat_v2, correlation = corBrownian(phy = ult2.tree),data = aph_phylo2, method = "ML")
summary(pgmod2)
Generalized least squares fit by maximum likelihood
  Model: KO_temp_worker ~ bio5 * habitat_v2 
  Data: aph_phylo2 
      AIC      BIC   logLik
  255.776 268.8019 -122.888
Correlation Structure: corBrownian
 Formula: ~1 
 Parameter estimate(s):
numeric(0)
Coefficients:
                             Value Std.Error   t-value p-value
(Intercept)               37.82400  2.043758 18.507082  0.0000
bio5                       0.01175  0.005942  1.978037  0.0508
habitat_v2flat woods      22.58447 12.917075  1.748420  0.0836
bio5:habitat_v2flat woods -0.06971  0.039823 -1.750585  0.0832
 Correlation: 
                          (Intr) bio5   hbt_2w
bio5                      -0.881              
habitat_v2flat woods      -0.132  0.148       
bio5:habitat_v2flat woods  0.132 -0.149 -0.999
Standardized residuals:
        Min          Q1         Med          Q3         Max 
-2.24865470 -0.26276358  0.05811258  0.26246427  0.99070867 
Residual standard error: 1.836591 
Degrees of freedom: 100 total; 96 residual

PHYLO ANOVA 3. forced polytomies for species

 
aph_phylo<-ant_dat_clim[match(ult2.tree$tip.label,ant_dat_clim$colony.id2),]
aph_phylo$habitat_v2<-droplevels(aph_phylo$habitat_v2)
phlaov3<-phylANOVA(ult2.tree,aph_phylo$habitat_v2,aph_phylo$KO_temp_worker,p.adj="hochberg")
phlaov3
$F
[1] 49.0392
$Pf
[1] 0.183
$T
                 deciduous forest flat woods
deciduous forest         0.000000  -7.002799
flat woods               7.002799   0.000000
$method
[1] "hochberg"
$Pt
                 deciduous forest flat woods
deciduous forest            1.000      0.183
flat woods                  0.183      1.000

Intepretting a phylogenetic ANOVA here

The way the phylogenetic ANOVA (sensu Garland et al. 1993; Syst. Biol.)
works is by first computing a standard ANOVA, and then comparing the
observed F to a distribution obtained by simulating on the tree under a
scenario of no effect of x on y. This "accounts for" the tree in the
sense that it attempts to account for the possibility that species may
have similar y conditioned on x because x influences y; or because they
share common history and are thus similar by virtue of this history (and
not at all due to x)

It is not particularly surprising that your P-value was lower in the
phylogenetic ANOVA than in your regular ANOVA. In general, the effect
of the phylogenetic ANOVA on P depends on the distribution of the
factor, x. If x is clumped on the tree, than the P-value of a
phylogenetic ANOVA will tend to be higher than a regular ANOVA. By
contrast, if x is overdispersed phylogenetically, the P-value of the
phylogenetic ANOVA will tend to be lower than the regular ANOVA.

I hope this is of some help.

- Liam
--
Liam J. Revell
University of Massachusetts Boston
web: http://faculty.umb.edu/liam.revell/
email: ***@umb.edu
blog: http://phytools.blogspot.com


2016-09-28. SHC suggestion: ancestral trait reconsturction -> regressions/anovas

summary pdf figs



2016-09-29. PIC

Dataset

SpeciesCTmaxTmaxHabitat
1ashmeadi42.80833324.0000FW
2floridana42.76852323.7778FW
6picea40.50096262.9615DF
7rudis41.33808300.3214DF
5miamiana40.95128329.3846DF
4lamellidens42.09375318.2500DF
3fulva41.01222310.5556DF
8tennesseensis40.75000311.0000DF

NOdes of phylogeny


Independent contrast estimates for CTMAX

Nodecctmax
1001-0.7004417
1002-0.5834076
1003-1.5296702
10040.8678094
10050.2051669
922.0095026
1006-0.0679396

Better fig with contrsts of CTmax v Tmax with points labeled by nodes




Page 75: 2016-10-03 and 2016-10-04.Climate cascade meeting

  1. Project updates:

    • Gene expression project:

      • Go over analyses:

        • Phylo anova, PGLS, ancestral trait reconstruction
        • GXP: basal expression, PGLS with CTmax and gxp parameters
      • Go over figure layout for ms

      • Left to do: QC and analyze hsp83 and hsp40

    • Multiple stressors ms:

      • Ask about SHC comments on confusion of mismatch membrane stability
    • Range limits ms: SHC lab gave verbal edits:

      • focus on 1 end of thermal niche breadth(although it is nice to mention it because CTmin decreases across lat)--CTmin.
      • Dicussion needs to talk about cold adaptation; why trade-offs?
      • Walk through results better
    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • in reference to missing samples
      • Fit in time to process Curtis' samples.
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: no clue what status is

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Talk title: Northern range limits of a common forest ant is associated with trade-offs in cold physiology
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
  • Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
      • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 76: 2016-10-03. Membrane stability

Trying to get how membrane stability is altered among different stressors. Two things can change/alter membrane fluidity; glycero-phospholipid head groups (phosphotidylethanolamine,PE; phosphotidylcholine PC) and lipid saturation(saturated vs unsaturated). In warmer environments, higher PC and lipid saturation confer homeostasis. Cooler environments = PE and unsaturated lipids. Membrane fluidity for desiccation resistance usually covaries with cold acclimation/adaptation.

PC bind 10-12 water molecules and PE binds 7-8. PE binds less water and it should be enriched under desiccation stress.

Going through some of the literature and what they found.

Hayward et al. 2014 has a nice explanation


In A, those that have greater unsaturated fatty acids, are more cold tolerant (operative body temperature to be exact). More fatty acid content negatively correlated with DPH anisotropy at 20 C (something that distorts light). DPH related to membrane rigidity and fluidity; high values = reduced constraint on intra-membrane molecular mobility. So High unsaturated fatty acid index is related to reduced membrane rigidity or high membrane fluidity (lower values of DPH anisotropy)

Cossins and Prosser 1978 PNAS shows:


High membraine fluidity (polarization) is higher in more cold acclimated fish. and...

High membrane fluidity is related to higher saturated:unsaturated. I think this makes sense, high unsat FA makes the polarization smaller.

Cooper et al. 2014; Functional ecology finds that acclimation ifluences PE/PC ratios


Summary table of directions of effects for stressors on membrane fluidity

Stress.typeHeatColdDesiccationpH
membrane.fluiditydecreaseincreaseincrease
membrane.rigidityincreasedecreasedecrease
PCincreasedecreasedecrease
PEdecreaseincreaseincrease
PE.PC.ratiodecreaseincreaseincrease
saturated.FAincreasedecreasedecrease
unsaturated.FAdecreaseincreaseincrease
saturated.unsaturated.ratioincreasedecreasedecrease

refs:

Hazel, J. R., and E. Eugene Williams. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research 29:167–227.

Hazel, J. R., S. J. McKinley, and M. F. Gerrits. 1998. Thermal acclimation of phase behavior in plasma membrane lipids of rainbow trout hepatocytes. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 275:R861–R869.

Cooper, B. S., L. A. Hammad, and K. L. Montooth. 2014. Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster. Functional Ecology 28:886–894.

Cossins, A. R., and C. L. Prosser. 1978. Evolutionary adaptation of membranes to temperature. Proceedings of the National Academy of Sciences of the United States of America 75:2040–2043.

Hayward, S. A. L., B. Manso, and A. R. Cossins. 2014. Molecular basis of chill resistance adaptations in poikilothermic animals. The Journal of Experimental Biology 217:6–15.

Holmstrup, M., K. Hedlund, and H. Boriss. 2002. Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology 48:961–970.



Page 77: 2016-10-04 Lab Safety Officer (LSO) meeting.

Department of Risk Management and Safety- Francis Churchill mainly speaking

Agenda:

1. News and updates

  • staff changes- new lab safety coordinator

  • lab fires at uvm

    • Chemistry- no blame; removing syringe that had fire . no evac, not a big fire

    • Votey building - small fire; no damage no hurt; alcohol near a burner--fire

      • faculty said not to leave in 1 class; that is bad. You should leave if fire alarm goes off.
  • Explosion at U Hawaii

    • post doc in lab; working with pressure vessel (creating fuel for bacteria to make biofilms and biofuels); mixing hydrogen and oxygen and some carbon dioxide. Did over and over, and had minor issues; but in march it blew up. Took her arm off. Lab had good safety; but regulatory agents don't know how stuff get mixed; we all need to get better at hazard assessment. Fined [Math Processing Error]750,000 building damage. Brought up issue of coverage of isurance for post doc researchers
    • Violations: Failed t provide a safe workplace; failed to ensure employees to follow proper procedures. Chemical Hygiene plan did not include SOPs for relevant safety.
  • Fine at Oregon

    • $275,000 by EPA for mismanagement of chemicals; did not get rid of their chemicals; no labeled; every bottle out there should be labeled.

We're going to be inspected by the US EPA and the state department(DEC)

risk control governance: 22% of safety trainings are not being completed; high for lab supervisors!!!! Lab safety notebooks need to be updated.

2. uvm police services

Office Sue Roberts: Work place violence. Active shooters? Training to safeguard to active shooters. How to respond?

Showing a video: Run, Hide, Fight. Know how to exit your building(how to get in or out). First responders don't tend to the injured; secondary responders will.

Systems in place:

  1. own police agency on campus with master keys and card access; allowing quick response times.
  2. CAT Alerts.
  3. Emergency blue lights- direct connect to UVM police.

Violence in the workplace

  1. Detect early, to get resoureces to person with alarming behavior.
  2. 2 teams on campus meet weekly and monthly; safety response team (discuss faculty and staff on campus) and care team (focus on needs of students). There is an anonymous care form (please give tons of info).

Phone systems

  • for lan line; 911 goes to uvm police and they know where you are, send office to location
  • for cell phones it goes to 911 call center in williston or it could go to brattoboro. Pay attention to where you are because phones don't give you pinpoint accuracy. Know street address.
  • Put UVM police into contact list: 802-656-3473

3. summary of audits

There are top 10 audit deficiencies: FILL OUT DATES; use yellow waste label

  1. safety training incomplete
  2. chemical waste is older than 6 months (we need a sticker and they need to collect the waste)
  3. mislabelling in chemical waste containers (completely fill out tags!!)
  4. reports of hazard assessments are not available
  5. lab online inventory (HCOC) has not been updated wtihin 6 months
  6. chemical containers not fully labeled (Waste and non waste need labels)
  7. research samples not albeled properly: sample ID, hazards, date material made
  8. info on emergency contact door is not current
  9. lab monthly inspection not done
  10. eyewash flush log not visible and current.

Creating corrective actions: Stuff for you to fix.:

4. lab safety basics

UVM lab safety; monthly self inspection: Policy, all labs must do monthly inspection. Document on checklist.

If you don't have one, they are distributed out to departments.

  1. Defrost freezers. check website so that our freezer is not ruined.
  2. Label samples
  3. annual refresher training ( everybody complete it? )
  4. can write descrepancies.

Labels: You need manufacturer's label and don't need anythingelse, just sign and date it.

Safety Audits at UVM: LabCliq. LSO can do corrective actions but the PI has to use Labcliq to verify online. Then PI gets email.

What trainings do you need? HERE

  • Take all things that are applicable to your laboratory!!
  • Green section 6 classes+ Annual refresher training. 4 online safety trainings and 2 classroom safety trainings.
  • Red section Fire safety training.

Lab safety notebook webpage HERE

5. CITI training opportunity

6. Q & A

  • Fraudulent calls: Target international faculty and staff referring to immigration status, healthcare, taxes. If you get calls, notify police services to set up trap on that phone. CHeck for scams on UVM police website



Page 78: 2016-10-05. Hsp gxp function valued trait fig

Boltzmann function and fit to dataset

 
Boltz<-function(data=x){
  B<-nls(gxp ~ (1+(max-1)/(1+exp((Tm-T)/a))),data=data, start=list(max=80,Tm=35,a=1.05), trace=TRUE,control=nls.control(warnOnly = TRUE, tol = 1e-05, maxiter=1000))
#summary(B)
  return(summary(B)$parameters)
}
T<-c(25,28,30,31.5,33,35,36.5,38.5,40,41)
gxp<-c(1.050927323,
1.795269722,
2.394945916,
2.025719648,
5.995719441,
12.75328258,
35.0828896,
44.80226791,
63.64704198,
67.607218)
FB1<-as.data.frame(cbind(T,gxp));FB1
Boltz(FB1)
knitr::kable(Boltz(FB1))

function that estimates values based on Boltzmann parameters

 
fud<-function(T=seq(25,70,.1),Tm=40,slope=1.8,max=50){
  y<-1+ (max-1)/(1+exp(((Tm-T)/slope)))
  return(y)
  }

parameter fits

EstimateStd. Errort valuep value
max76.1796068.06175149.4495110.0000310
Tm37.4327870.558516567.0218040.0000000
a1.7658510.32482545.4363100.0009701

With units and real data

 
plot(seq(0,70,.1),fud(T=seq(0,70,.1)),col="blue",type="n",ylim=c(0,80),las=1,xlab="",ylab="",xlim=c(25,42))
mtext("Fold Induction", side=2, line=2.5, cex=2)
mtext("Temperature", side=1, line=2.7, cex=2)
lines(seq(25,70,.1),fud(Tm=37.4,slope=1.76,max=76),lwd=6)
points(FB1$T,FB1$gxp,pch=19,col="blue",cex=3)
lines(c(37.4,37.4),c(-10,39),lwd=5,lty="dotdash",col="purple")
abline(h=73,lty="dotdash",col="red",lwd=5)
arrows(35,20,38,50,code=2,lwd=2,)
text(c(39,30,36),c(20,76,50),c("Tm","Max","Slope"),font=2,cex=2)

No units or real data

 
plot(seq(0,70,.1),fud(T=seq(0,70,.1)),col="blue",type="n",ylim=c(0,80),las=1,xlab="",ylab="",xlim=c(25,42),axes=FALSE)
mtext("Fold Induction", side=2, line=2.5, cex=2)
mtext("Temperature", side=1, line=2.7, cex=2)
lines(seq(25,70,.1),fud(Tm=37.4,slope=1.76,max=76),lwd=6)
#points(FB1$T,FB1$gxp,pch=19,col="blue",cex=3)
lines(c(37.4,37.4),c(-10,39),lwd=5,lty="dotdash",col="purple")
abline(h=73,lty="dotdash",col="red",lwd=5)
arrows(35,20,38,50,code=2,lwd=2,)
text(c(39,30,36),c(20,76,50),c("Tm","Max","Slope"),font=2,cex=2)
box()



Page 79: 2016-10-06. SHC lab meeting: NSF post doc app

Lab safety stuff:

  1. Do trainings online
  2. Check waste and dispose it, ethidium bromide gels
  3. Do monthly inspections

Newar works on Fridays; works up to 6 hours.

Notes:

  • use performance curves or reaction norm instead of function-valued traits
  • separate out terms, performance for fitness proxy and then reaction norm for physiology or any traits-phenology GxE = reaction norm; generate performance cruve--growth over season
  • context depdnent expression of traits drive relative performance
  • who cares about separating out photoperiod vs temp
  • env can shape relationship between traits and performance in non-linera and unexpected ways or in ways that influence the process of adaptation, adaptive potential.
  • look at many gxp traits-relating those to each other and to performance
  • integrate all of these traits and overlay them on a complex environmental background
  • stoichiometry: give ratios not just %
  • expand on QG of gene expression
  • selection may act in context-dependent manner
  • be careful about constraints and trade-offs
  • Think about training objective # 3; goal of grant? reword to make sure its a goal
  • certain clones: does not tell you a whole lot. how should poplar be selected? Talk about general principals that you can lead to suggest to growers. What kind of outreach . prescribe based on environmental variables I am measuring.
  • more info that is concrete on what the patterns are; feels adrift; not tied tightly between sections
  • introduction- get rid of 2nd paragraph. maybe 1 sentence to previous paragraph
  • reserach objectives: clarify traits; response function; add a little bit or shift; clarify parts
  • get the realized GSL ; using existing rad seq data; predict performance as a function of temperature



Page 80: 2016-10-07. Prepping cliamte cascade meeting

  1. Project updates:

    • Gene expression project:

      • Go over analyses:
      • Go over figure layout for ms
    • Multiple stressors ms:

      • Ask about SHC comments on confusion of mismatch membrane stability
    • Range limits ms: SHC lab gave verbal edits:

      • focus on 1 end of thermal niche breadth(although it is nice to mention it because CTmin decreases across lat)--CTmin.
      • Dicussion needs to talk about cold adaptation; why trade-offs?
      • Walk through results better
    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • in reference to missing samples
      • Fit in time to process Curtis' samples.
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: no clue what status is

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Talk title: Northern range limits of a common forest ant is associated with trade-offs in cold physiology
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
  • Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
      • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.



Page 81: 2016-10-11. ANCOVA models for testing interaction of hsp gxp parameter and habitat on CTmax

 
apply(b2[,3:11],2,function(x){summary(aov(b2$KO_temp_worker~b2$habitat_v2*x))})
$FC_hsc70_1468_max
                Df Sum Sq Mean Sq F value  Pr(>F)    
b2$habitat_v2    1 20.902  20.902  81.798 1.1e-11 ***
x                1  0.375   0.375   1.467   0.232    
b2$habitat_v2:x  1  0.374   0.374   1.462   0.233    
Residuals       45 11.499   0.256                    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsc70_1468_slope
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 20.902  20.902  84.903 6.33e-12 ***
x                1  1.169   1.169   4.749   0.0346 *  
b2$habitat_v2:x  1  0.000   0.000   0.000   0.9999    
Residuals       45 11.078   0.246                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsc70_1468_Tm
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 20.902  20.902  89.676 2.79e-12 ***
x                1  1.125   1.125   4.828   0.0332 *  
b2$habitat_v2:x  1  0.633   0.633   2.718   0.1062    
Residuals       45 10.489   0.233                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsp40_541_max
                Df Sum Sq Mean Sq F value  Pr(>F)    
b2$habitat_v2    1 21.311  21.311  85.111 9.4e-12 ***
x                1  0.360   0.360   1.440  0.2368    
b2$habitat_v2:x  1  0.875   0.875   3.494  0.0684 .  
Residuals       43 10.767   0.250                    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_hsp40_541_slope
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 21.311  21.311  81.495 1.75e-11 ***
x                1  0.605   0.605   2.312    0.136    
b2$habitat_v2:x  1  0.153   0.153   0.585    0.449    
Residuals       43 11.245   0.262                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_hsp40_541_Tm
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 21.311  21.311 104.527 4.39e-13 ***
x                1  1.642   1.642   8.052  0.00691 ** 
b2$habitat_v2:x  1  1.594   1.594   7.816  0.00771 ** 
Residuals       43  8.767   0.204                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_Hsp83_279_max
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 23.226  23.226  95.284 8.72e-13 ***
x                1  0.063   0.063   0.260    0.612    
b2$habitat_v2:x  1  0.330   0.330   1.355    0.250    
Residuals       46 11.213   0.244                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
4 observations deleted due to missingness
$FC_Hsp83_279_slope
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 23.226  23.226  95.648 8.22e-13 ***
x                1  0.156   0.156   0.641    0.428    
b2$habitat_v2:x  1  0.281   0.281   1.157    0.288    
Residuals       46 11.170   0.243                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
4 observations deleted due to missingness
$FC_Hsp83_279_Tm
                Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2    1 23.226  23.226  95.177 8.88e-13 ***
x                1  0.068   0.068   0.279    0.600    
b2$habitat_v2:x  1  0.313   0.313   1.283    0.263    
Residuals       46 11.225   0.244                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
4 observations deleted due to missingness

Summary table of each parameter and its interaction with habitat on CTmax:

summary.tablemax70slope70Tm70max40slope40Tm40max83slope83Tm83
habitatyesyesyesyesyesyesyesyesyes
parameternoyesyesnonoyesnonono
habitat * parameternononononoyesnonono

Effect of habitat type on hsp gxp parameters

 
apply(b2[,3:11],2,function(x){summary(aov(x~b2$habitat_v2))})
$FC_hsc70_1468_max
              Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2  1   4819    4819   30.98 1.21e-06 ***
Residuals     47   7312     156                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsc70_1468_slope
              Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2  1  2.562  2.5621   12.99 0.000754 ***
Residuals     47  9.270  0.1972                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsc70_1468_Tm
              Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2  1  18.41  18.409   25.53 7.03e-06 ***
Residuals     47  33.89   0.721                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
5 observations deleted due to missingness
$FC_hsp40_541_max
              Df Sum Sq Mean Sq F value Pr(>F)  
b2$habitat_v2  1  110.7  110.69   5.018 0.0301 *
Residuals     45  992.5   22.06                 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_hsp40_541_slope
              Df Sum Sq Mean Sq F value Pr(>F)  
b2$habitat_v2  1  2.683   2.683   4.294  0.044 *
Residuals     45 28.123   0.625                 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_hsp40_541_Tm
              Df Sum Sq Mean Sq F value   Pr(>F)    
b2$habitat_v2  1  39.38   39.38    14.2 0.000476 ***
Residuals     45 124.81    2.77                     
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
7 observations deleted due to missingness
$FC_Hsp83_279_max
              Df Sum Sq Mean Sq F value Pr(>F)  
b2$habitat_v2  1  149.4  149.43   5.649 0.0215 *
Residuals     48 1269.8   26.45                 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
4 observations deleted due to missingness
$FC_Hsp83_279_slope
              Df Sum Sq Mean Sq F value Pr(>F)
b2$habitat_v2  1   1.92  1.9227   2.345  0.132
Residuals     48  39.35  0.8198               
4 observations deleted due to missingness
$FC_Hsp83_279_Tm
              Df Sum Sq Mean Sq F value  Pr(>F)   
b2$habitat_v2  1  42.56   42.56   9.229 0.00385 **
Residuals     48 221.37    4.61                   
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
4 observations deleted due to missingness

Summary table of effect of habitat on hsp gxp parameter

paramhabitat
max70yes
slope70yes
Tm70yes
max40yes
slope40yes
Tm40yes
max83yes
slope83no
Tm83yes



Page 82: 2016-10-11. variance partitioning in CTmax of aphaeno

  • Phylogenetic axes = first 9
  • Ecology = MAT, TMax, and habitat type
 
#model construction
var2<- varpart(Aph.dat$KO_temp_worker, ~ Axis.1 + Axis.2+ Axis.3+ Axis.4+Axis.5+Axis.6+Axis.7+Axis.8+Axis.9, ~bio1+bio5+habitat_v2,data=Aph.dat)
$part
$SS.Y
[1] 121.5443
$fract
                Df R.squared Adj.R.squared Testable
[a+b] = X1       9 0.5199228     0.4719151     TRUE
[b+c] = X2       3 0.4388392     0.4213030     TRUE
[a+b+c] = X1+X2 12 0.5288496     0.4638634     TRUE
$indfract
                Df R.squared Adj.R.squared Testable
[a] = X1|X2      9        NA   0.042560390     TRUE
[b]              0        NA   0.429354679    FALSE
[c] = X2|X1      3        NA  -0.008051705     TRUE
[d] = Residuals NA        NA   0.536136636    FALSE

Figure with different components



Page 83: 2016-10-12. Testing effect of MAT on Hsp gxp and looking at correlations between phylogeny and climate.

 
> apply(mergy[,38:43],2,function(x){summary(lm(log10(x)~mergy$bio1))})
$FC_83
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.69315 -0.17367 -0.02182  0.16945  0.66741 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.993238   0.115874   8.572 1.19e-11 ***
mergy$bio1  -0.000497   0.001227  -0.405    0.687    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.2879 on 54 degrees of freedom
Multiple R-squared:  0.003028,  Adjusted R-squared:  -0.01543 
F-statistic: 0.164 on 1 and 54 DF,  p-value: 0.6871
$FC_70
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.63143 -0.12966  0.02354  0.18406  0.45652 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.571710   0.105899  14.842   <2e-16 ***
mergy$bio1  0.000679   0.001122   0.605    0.547    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.2631 on 54 degrees of freedom
Multiple R-squared:  0.006742,  Adjusted R-squared:  -0.01165 
F-statistic: 0.3666 on 1 and 54 DF,  p-value: 0.5474
$FC_40
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.87164 -0.16033  0.05806  0.23030  0.71656 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.8929016  0.1372969   6.503 2.63e-08 ***
mergy$bio1  0.0002741  0.0014540   0.188    0.851    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3411 on 54 degrees of freedom
Multiple R-squared:  0.0006575, Adjusted R-squared:  -0.01785 
F-statistic: 0.03553 on 1 and 54 DF,  p-value: 0.8512
$B_83
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.86395 -0.31896 -0.04139  0.33454  0.76906 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.203307   0.186138   1.092    0.280
mergy$bio1  -0.002098   0.001971  -1.064    0.292
Residual standard error: 0.4624 on 54 degrees of freedom
Multiple R-squared:  0.02054,   Adjusted R-squared:  0.002405 
F-statistic: 1.133 on 1 and 54 DF,  p-value: 0.292
$B_70
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
    Min      1Q  Median      3Q     Max 
-0.9569 -0.3399 -0.0464  0.3489  0.8581 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.199005   0.172676   1.152    0.254
mergy$bio1  -0.002843   0.001829  -1.555    0.126
Residual standard error: 0.429 on 54 degrees of freedom
Multiple R-squared:  0.04284,   Adjusted R-squared:  0.02512 
F-statistic: 2.417 on 1 and 54 DF,  p-value: 0.1259
$B_40
Call:
lm(formula = log10(x) ~ mergy$bio1)
Residuals:
     Min       1Q   Median       3Q      Max 
-1.68902 -0.28172  0.07947  0.31104  0.98014 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.300482   0.221888   1.354    0.181
mergy$bio1  -0.003086   0.002350  -1.313    0.195
Residual standard error: 0.5512 on 54 degrees of freedom
Multiple R-squared:  0.03096,   Adjusted R-squared:  0.01301 
F-statistic: 1.725 on 1 and 54 DF,  p-value: 0.1946

Summary: none are significant

Correlation between Mean Annual Temperature (MAT), Tmax, and 4 phylogenetic axes

MATTmaxAxis.1Axis.2Axis.3Axis.4
MAT1.0000.9100.8570.1970.1820.132
Tmax0.9101.0000.8360.1280.2040.110
Axis.10.8570.8361.0000.0020.0000.008
Axis.20.1970.1280.0021.0000.000-0.002
Axis.30.1820.2040.0000.0001.0000.000
Axis.40.1320.1100.008-0.0020.0001.000

20161013 follow up: checking 18s HKG stability

If there is an effect of rearing temperature, Tmax, and/or heat shock treatment, phylo axes, then the HKG is not stable.

 
ct<-read.csv("../Data/20150810_raw_CT_values.csv")
z<-inner_join(ct,mergy,by="Colony")
z$qpcr_block<-as.factor(z$qpcr_block)
#different 18s ct among treatments?
#different 18s ct
summary(stepAIC(lm(log2(X18)~bio5*treatment+qpcr_block+Axis.1+Axis.2+Axis.3+Rearing_Temp,data=z2)),direction="forward")
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.176814   0.056303  56.424  < 2e-16 ***
qpcr_block2   0.107059   0.017592   6.086 1.84e-08 ***
qpcr_block3   0.163280   0.018586   8.785 2.83e-14 ***
Axis.1       -0.136572   0.072299  -1.889   0.0616 .  
Axis.2        0.204421   0.112195   1.822   0.0712 .  
Axis.3       -0.278600   0.165081  -1.688   0.0944 .  
Rearing_Temp -0.003763   0.002393  -1.573   0.1187    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.07137 on 107 degrees of freedom
Multiple R-squared:  0.5648,    Adjusted R-squared:  0.5404 
F-statistic: 23.15 on 6 and 107 DF,  p-value: < 2.2e-16

20161013 Taking out Axis1 because it covaries with bio5(Tmax)

 
apply(mergy[,38:43],2,function(x){summary(stepAIC(lm(log10(x)~mergy$bio5+mergy$Rearing_Temp+mergy$Axis.2+mergy$Axis.3)),direction="forward")})
Start:  AIC=-142.41
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.3        1  0.002884 4.1926 -144.37
- mergy$Axis.2        1  0.008699 4.1984 -144.29
- mergy$bio5          1  0.017061 4.2068 -144.18
<none>  
                            4.1897 -142.41
- mergy$Rearing_Temp  1  0.257200 4.4469 -140.96
Step:  AIC=-144.37
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.2        1  0.009219 4.2018 -146.25
- mergy$bio5          1  0.021070 4.2137 -146.08
<none>  
                            4.1926 -144.37
- mergy$Rearing_Temp  1  0.254448 4.4471 -142.96
Step:  AIC=-146.25
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp
                     Df Sum of Sq    RSS     AIC
- mergy$bio5          1   0.01849 4.2203 -147.99
<none>  
                            4.2018 -146.25
- mergy$Rearing_Temp  1   0.29906 4.5009 -144.26
Step:  AIC=-147.99
log10(x) ~ mergy$Rearing_Temp
                     Df Sum of Sq    RSS     AIC
<none>  
                            4.2203 -147.99
- mergy$Rearing_Temp  1   0.30548 4.5258 -145.94
Start:  AIC=-151.28
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.3        1  0.006133 3.6020 -153.18
- mergy$bio5          1  0.014353 3.6102 -153.05
- mergy$Axis.2        1  0.125441 3.7213 -151.29
<none>  
                            3.5959 -151.28
- mergy$Rearing_Temp  1  0.211236 3.8071 -149.97
Step:  AIC=-153.18
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2
                     Df Sum of Sq    RSS     AIC
- mergy$bio5          1  0.011172 3.6132 -155.00
<none>  
                            3.6020 -153.18
- mergy$Axis.2        1  0.128482 3.7305 -153.15
- mergy$Rearing_Temp  1  0.218797 3.8208 -151.76
Step:  AIC=-155
log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2
                     Df Sum of Sq    RSS     AIC
<none>  
                            3.6132 -155.00
- mergy$Axis.2        1   0.13788 3.7510 -154.83
- mergy$Rearing_Temp  1   0.22616 3.8393 -153.48
Start:  AIC=-127.73
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.3        1   0.03867 5.4351 -129.32
- mergy$bio5          1   0.10859 5.5051 -128.58
<none>  
                            5.3965 -127.73
- mergy$Axis.2        1   0.42509 5.8216 -125.33
- mergy$Rearing_Temp  1   0.64013 6.0366 -123.23
Step:  AIC=-129.32
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2
                     Df Sum of Sq    RSS     AIC
- mergy$bio5          1   0.14392 5.5791 -129.80
<none>  
                            5.4351 -129.32
- mergy$Axis.2        1   0.41361 5.8488 -127.06
- mergy$Rearing_Temp  1   0.67128 6.1064 -124.56
Step:  AIC=-129.8
log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2
                     Df Sum of Sq    RSS     AIC
<none>  
                            5.5791 -129.80
- mergy$Axis.2        1   0.47047 6.0495 -127.11
- mergy$Rearing_Temp  1   0.63445 6.2135 -125.56
Start:  AIC=-88.85
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.2        1   0.02655 10.576 -90.709
- mergy$bio5          1   0.27432 10.824 -89.365
<none>  
                            10.549 -88.854
- mergy$Axis.3        1   0.47944 11.029 -88.277
- mergy$Rearing_Temp  1   0.48666 11.036 -88.239
Step:  AIC=-90.71
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$bio5          1   0.29726 10.873 -91.101
<none>  
                            10.576 -90.709
- mergy$Rearing_Temp  1   0.46041 11.036 -90.237
- mergy$Axis.3        1   0.49173 11.068 -90.073
Step:  AIC=-91.1
log10(x) ~ mergy$Rearing_Temp + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$Axis.3        1   0.36201 11.235 -91.201
<none>  
                            10.873 -91.101
- mergy$Rearing_Temp  1   0.50260 11.376 -90.480
Step:  AIC=-91.2
log10(x) ~ mergy$Rearing_Temp
                     Df Sum of Sq    RSS     AIC
<none>  
                            11.235 -91.201
- mergy$Rearing_Temp  1   0.56062 11.796 -90.377
Start:  AIC=-126.78
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq     RSS      AIC
- mergy$Axis.2        1    0.0042  5.4901 -128.735
- mergy$Axis.3        1    0.0404  5.5262 -128.354
- mergy$bio5          1    0.1532  5.6391 -127.182
<none>  
                             5.4859 -126.780
- mergy$Rearing_Temp  1    4.5602 10.0461  -93.689
Step:  AIC=-128.74
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.3
                     Df Sum of Sq     RSS      AIC
- mergy$Axis.3        1    0.0392  5.5292 -130.323
- mergy$bio5          1    0.1609  5.6509 -129.060
<none>  
                             5.4901 -128.735
- mergy$Rearing_Temp  1    4.8078 10.2978  -94.254
Step:  AIC=-130.32
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp
                     Df Sum of Sq     RSS      AIC
<none>  
                             5.5292 -130.323
- mergy$bio5          1     0.204  5.7332 -130.221
- mergy$Rearing_Temp  1     4.770 10.2992  -96.246
Start:  AIC=-80.6
log10(x) ~ mergy$bio5 + mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
- mergy$bio5          1    0.1822 12.346 -81.733
<none>  
                            12.164 -80.595
- mergy$Rearing_Temp  1    0.7613 12.925 -79.074
- mergy$Axis.2        1    1.1960 13.360 -77.156
- mergy$Axis.3        1    3.4308 15.595 -68.185
Step:  AIC=-81.73
log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3
                     Df Sum of Sq    RSS     AIC
<none>  
                            12.346 -81.733
- mergy$Rearing_Temp  1    0.8276 13.174 -79.970
- mergy$Axis.2        1    1.3181 13.664 -77.849
- mergy$Axis.3        1    3.9458 16.292 -67.648
$FC_83
Call:
lm(formula = log10(x) ~ mergy$Rearing_Temp)
Residuals:
    Min      1Q  Median      3Q     Max 
-0.6121 -0.1422 -0.0417  0.1399  0.7465 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)         0.39083    0.27720   1.410   0.1641  
mergy$Rearing_Temp  0.02473    0.01228   2.013   0.0489 *
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.2745 on 56 degrees of freedom
Multiple R-squared:  0.0675,    Adjusted R-squared:  0.05084 
F-statistic: 4.053 on 1 and 56 DF,  p-value: 0.0489
$FC_70
Call:
lm(formula = log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.67832 -0.16434  0.02663  0.17901  0.38810 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)         2.12428    0.26812   7.923 1.16e-10 ***
mergy$Rearing_Temp -0.02197    0.01184  -1.855   0.0689 .  
mergy$Axis.2        0.81467    0.56233   1.449   0.1531    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.2563 on 55 degrees of freedom
Multiple R-squared:  0.07529,   Adjusted R-squared:  0.04167 
F-statistic: 2.239 on 2 and 55 DF,  p-value: 0.1162
$FC_40
Call:
lm(formula = log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.80408 -0.10662  0.07152  0.25390  0.55421 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)         0.08767    0.33317   0.263   0.7934  
mergy$Rearing_Temp  0.03680    0.01471   2.501   0.0154 *
mergy$Axis.2        1.50486    0.69876   2.154   0.0357 *
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3185 on 55 degrees of freedom
Multiple R-squared:  0.2085,    Adjusted R-squared:  0.1797 
F-statistic: 7.242 on 2 and 55 DF,  p-value: 0.001614
$B_83
Call:
lm(formula = log10(x) ~ mergy$Rearing_Temp)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.90287 -0.32839  0.03175  0.37027  0.81465 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)        -0.73480    0.45228  -1.625     0.11
mergy$Rearing_Temp  0.03350    0.02004   1.672     0.10
Residual standard error: 0.4479 on 56 degrees of freedom
Multiple R-squared:  0.04753,   Adjusted R-squared:  0.03052 
F-statistic: 2.794 on 1 and 56 DF,  p-value: 0.1002
$B_70
Call:
lm(formula = log10(x) ~ mergy$bio5 + mergy$Rearing_Temp)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.80424 -0.20413 -0.03442  0.25526  0.81219 
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)        -1.479502   0.641632  -2.306   0.0249 *  
mergy$bio5         -0.002799   0.001965  -1.424   0.1600    
mergy$Rearing_Temp  0.097784   0.014196   6.888 5.75e-09 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3171 on 55 degrees of freedom
Multiple R-squared:  0.4779,    Adjusted R-squared:  0.4589 
F-statistic: 25.17 on 2 and 55 DF,  p-value: 1.734e-08
$B_40
Call:
lm(formula = log10(x) ~ mergy$Rearing_Temp + mergy$Axis.2 + mergy$Axis.3)
Residuals:
     Min       1Q   Median       3Q      Max 
-1.32627 -0.32412  0.04458  0.31258  0.90367 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        -0.92089    0.50132  -1.837 0.071726 .  
mergy$Rearing_Temp  0.04213    0.02214   1.903 0.062428 .  
mergy$Axis.2       -2.51976    1.04941  -2.401 0.019819 *  
mergy$Axis.3       -6.14160    1.47835  -4.154 0.000117 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.4782 on 54 degrees of freedom
Multiple R-squared:  0.3049,    Adjusted R-squared:  0.2663 
F-statistic: 7.897 on 3 and 54 DF,  p-value: 0.0001852


2016-11-01 adding full models with automated stepAIC

 
apply(merg[,38:43],2,function(x){summary(stepAIC(lm(log10(x)~merg$bio5+merg$Rearing_Temp+merg$Axis.1+merg$Axis.2+merg$Axis.3)),direction="forward")})
Start:  AIC=-135.83
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Axis.3        1   0.00006 4.2616 -137.82
- merg$Axis.2        1   0.00563 4.2671 -137.75
- merg$Axis.1        1   0.03032 4.2918 -137.42
- merg$bio5          1   0.05267 4.3142 -137.12
<none>  
                           4.2615 -135.83
- merg$Rearing_Temp  1   0.32622 4.5877 -133.62
Step:  AIC=-137.82
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
- merg$Axis.2        1   0.00557 4.2671 -139.75
- merg$Axis.1        1   0.03288 4.2944 -139.39
- merg$bio5          1   0.05995 4.3215 -139.03
<none>  
                           4.2616 -137.82
- merg$Rearing_Temp  1   0.32790 4.5895 -135.60
Step:  AIC=-139.75
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1
                    Df Sum of Sq    RSS     AIC
- merg$Axis.1        1   0.02927 4.2964 -141.36
- merg$bio5          1   0.05486 4.3220 -141.02
<none>  
                           4.2671 -139.75
- merg$Rearing_Temp  1   0.35722 4.6243 -137.17
Step:  AIC=-141.36
log10(x) ~ merg$bio5 + merg$Rearing_Temp
                    Df Sum of Sq    RSS     AIC
- merg$bio5          1   0.02771 4.3241 -142.99
<none>  
                           4.2964 -141.36
- merg$Rearing_Temp  1   0.33717 4.6336 -139.05
Step:  AIC=-142.99
log10(x) ~ merg$Rearing_Temp
                    Df Sum of Sq    RSS     AIC
<none>  
                           4.3241 -142.99
- merg$Rearing_Temp  1    0.3481 4.6722 -140.58
Start:  AIC=-147.19
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Axis.1        1  0.009107 3.5000 -149.05
- merg$Axis.3        1  0.009894 3.5008 -149.03
- merg$bio5          1  0.016701 3.5076 -148.92
- merg$Axis.2        1  0.046939 3.5379 -148.43
<none>  
                           3.4909 -147.19
- merg$Rearing_Temp  1  0.215627 3.7065 -145.78
Step:  AIC=-149.05
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.2 + merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Axis.3        1  0.005260 3.5053 -150.96
- merg$bio5          1  0.008554 3.5086 -150.91
- merg$Axis.2        1  0.057491 3.5575 -150.12
<none>  
                           3.5000 -149.05
- merg$Rearing_Temp  1  0.210727 3.7107 -147.71
Step:  AIC=-150.96
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
- merg$bio5          1  0.006235 3.5115 -152.86
- merg$Axis.2        1  0.059127 3.5644 -152.01
<none>  
                           3.5053 -150.96
- merg$Rearing_Temp  1  0.218048 3.7233 -149.52
Step:  AIC=-152.86
log10(x) ~ merg$Rearing_Temp + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
- merg$Axis.2        1  0.065809 3.5773 -153.80
<none>  
                           3.5115 -152.86
- merg$Rearing_Temp  1  0.225290 3.7368 -151.31
Step:  AIC=-153.8
log10(x) ~ merg$Rearing_Temp
                    Df Sum of Sq    RSS    AIC
<none>  
                           3.5773 -153.8
- merg$Rearing_Temp  1   0.18654 3.7639 -152.9
Start:  AIC=-122.77
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Axis.3        1   0.01759 5.0640 -124.58
- merg$Axis.1        1   0.03695 5.0833 -124.37
- merg$bio5          1   0.09873 5.1451 -123.69
- merg$Axis.2        1   0.14349 5.1899 -123.20
<none>  
                           5.0464 -122.77
- merg$Rearing_Temp  1   0.61137 5.6577 -118.37
Step:  AIC=-124.58
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
- merg$Axis.1        1   0.06171 5.1257 -125.90
- merg$Axis.2        1   0.13474 5.1987 -125.11
- merg$bio5          1   0.15531 5.2193 -124.89
<none>  
                           5.0640 -124.58
- merg$Rearing_Temp  1   0.62522 5.6892 -120.06
Step:  AIC=-125.9
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
- merg$bio5          1   0.11746 5.2431 -126.63
- merg$Axis.2        1   0.17282 5.2985 -126.04
<none>  
                           5.1257 -125.90
- merg$Rearing_Temp  1   0.66713 5.7928 -121.05
Step:  AIC=-126.63
log10(x) ~ merg$Rearing_Temp + merg$Axis.2
                    Df Sum of Sq    RSS     AIC
<none>  
                           5.2431 -126.63
- merg$Axis.2        1   0.21853 5.4617 -126.35
- merg$Rearing_Temp  1   0.63456 5.8777 -122.23
Start:  AIC=-85.77
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Axis.2        1   0.09471 10.350 -87.247
- merg$bio5          1   0.14357 10.399 -86.979
- merg$Axis.3        1   0.17560 10.431 -86.803
- merg$Rearing_Temp  1   0.34221 10.597 -85.900
<none>  
                           10.255 -85.771
- merg$Axis.1        1   0.51791 10.773 -84.963
Step:  AIC=-87.25
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$bio5          1   0.09885 10.449 -88.705
- merg$Axis.3        1   0.20541 10.555 -88.127
- merg$Rearing_Temp  1   0.28656 10.636 -87.690
<none>  
                           10.350 -87.247
- merg$Axis.1        1   0.45249 10.802 -86.808
Step:  AIC=-88.71
log10(x) ~ merg$Rearing_Temp + merg$Axis.1 + merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$Rearing_Temp  1   0.30750 10.756 -89.052
<none>  
                           10.449 -88.705
- merg$Axis.3        1   0.37408 10.823 -88.700
- merg$Axis.1        1   0.60533 11.054 -87.495
Step:  AIC=-89.05
log10(x) ~ merg$Axis.1 + merg$Axis.3
              Df Sum of Sq    RSS     AIC
<none>  
                     10.756 -89.052
- merg$Axis.3  1   0.42229 11.178 -88.857
- merg$Axis.1  1   0.71553 11.472 -87.381
Start:  AIC=-122.03
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS      AIC
- merg$bio5          1    0.0001 5.4282 -124.032
- merg$Axis.2        1    0.0329 5.4610 -123.689
- merg$Axis.1        1    0.0409 5.4690 -123.605
- merg$Axis.3        1    0.0666 5.4947 -123.338
<none>  
                           5.4281 -122.033
- merg$Rearing_Temp  1    4.5125 9.9406  -89.546
Step:  AIC=-124.03
log10(x) ~ merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + merg$Axis.3
                    Df Sum of Sq    RSS      AIC
- merg$Axis.2        1    0.0357 5.4639 -125.659
- merg$Axis.3        1    0.0798 5.5080 -125.200
- merg$Axis.1        1    0.1695 5.5977 -124.279
<none>  
                           5.4282 -124.032
- merg$Rearing_Temp  1    4.5125 9.9407  -91.545
Step:  AIC=-125.66
log10(x) ~ merg$Rearing_Temp + merg$Axis.1 + merg$Axis.3
                    Df Sum of Sq     RSS      AIC
- merg$Axis.3        1    0.0784  5.5423 -126.847
- merg$Axis.1        1    0.1733  5.6372 -125.879
<none>  
                            5.4639 -125.659
- merg$Rearing_Temp  1    4.5377 10.0016  -93.197
Step:  AIC=-126.85
log10(x) ~ merg$Rearing_Temp + merg$Axis.1
                    Df Sum of Sq     RSS      AIC
- merg$Axis.1        1    0.1750  5.7173 -127.075
<none>  
                            5.5423 -126.847
- merg$Rearing_Temp  1    4.4787 10.0209  -95.087
Step:  AIC=-127.07
log10(x) ~ merg$Rearing_Temp
                    Df Sum of Sq     RSS      AIC
<none>  
                            5.7173 -127.075
- merg$Rearing_Temp  1    4.7398 10.4571  -94.659
Start:  AIC=-78.04
log10(x) ~ merg$bio5 + merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3
                    Df Sum of Sq    RSS     AIC
- merg$bio5          1    0.1636 11.382 -79.225
<none>  
                           11.219 -78.036
- merg$Axis.1        1    0.4666 11.685 -77.754
- merg$Rearing_Temp  1    0.6847 11.903 -76.718
- merg$Axis.2        1    0.9679 12.186 -75.402
- merg$Axis.3        1    3.9432 15.162 -63.168
Step:  AIC=-79.23
log10(x) ~ merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + merg$Axis.3
                    Df Sum of Sq    RSS     AIC
<none>  
                           11.382 -79.225
- merg$Axis.1        1    0.4311 11.813 -79.144
- merg$Rearing_Temp  1    0.6969 12.079 -77.897
- merg$Axis.2        1    0.8346 12.217 -77.263
- merg$Axis.3        1    3.9224 15.305 -64.643
$FC_83
Call:
lm(formula = log10(x) ~ merg$Rearing_Temp)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.61666 -0.14861 -0.03988  0.14529  0.74191 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)  
(Intercept)        0.36231    0.28484   1.272   0.2087  
merg$Rearing_Temp  0.02638    0.01254   2.104   0.0399 *
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.2804 on 55 degrees of freedom
Multiple R-squared:  0.07451,   Adjusted R-squared:  0.05768 
F-statistic: 4.428 on 1 and 55 DF,  p-value: 0.03995
$FC_70
Call:
lm(formula = log10(x) ~ merg$Rearing_Temp)
Residuals:
    Min      1Q  Median      3Q     Max 
-0.6417 -0.1415  0.0238  0.1711  0.3910 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        2.06670    0.25908   7.977 9.51e-11 ***
merg$Rearing_Temp -0.01931    0.01140  -1.694    0.096 .  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.255 on 55 degrees of freedom
Multiple R-squared:  0.04956,   Adjusted R-squared:  0.03228 
F-statistic: 2.868 on 1 and 55 DF,  p-value: 0.09601
$FC_40
Call:
lm(formula = log10(x) ~ merg$Rearing_Temp + merg$Axis.2)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.80392 -0.10073  0.07339  0.22020  0.55569 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)  
(Intercept)        0.09071    0.32917   0.276   0.7839  
merg$Rearing_Temp  0.03680    0.01453   2.533   0.0143 *
merg$Axis.2        1.24166    0.83541   1.486   0.1431  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3145 on 53 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.166, Adjusted R-squared:  0.1345 
F-statistic: 5.275 on 2 and 53 DF,  p-value: 0.008145
$B_83
Call:
lm(formula = log10(x) ~ merg$Axis.1 + merg$Axis.3)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.89374 -0.32249  0.03374  0.32440  0.77433 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.01073    0.05911   0.182   0.8566  
merg$Axis.1 -1.09010    0.57516  -1.895   0.0634 .
merg$Axis.3  2.00468    1.37680   1.456   0.1512  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.4463 on 54 degrees of freedom
Multiple R-squared:  0.09566,   Adjusted R-squared:  0.06217 
F-statistic: 2.856 on 2 and 54 DF,  p-value: 0.06621
$B_70
Call:
lm(formula = log10(x) ~ merg$Rearing_Temp)
Residuals:
    Min      1Q  Median      3Q     Max 
-0.7507 -0.1789 -0.0132  0.2067  0.7046 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -2.24217    0.32753  -6.846 6.75e-09 ***
merg$Rearing_Temp  0.09734    0.01442   6.753 9.59e-09 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.3224 on 55 degrees of freedom
Multiple R-squared:  0.4533,    Adjusted R-squared:  0.4433 
F-statistic:  45.6 on 1 and 55 DF,  p-value: 9.589e-09
$B_40
Call:
lm(formula = log10(x) ~ merg$Rearing_Temp + merg$Axis.1 + merg$Axis.2 + 
    merg$Axis.3)
Residuals:
     Min       1Q   Median       3Q      Max 
-1.38234 -0.22276 -0.00071  0.25240  0.84201 
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -0.84687    0.49824  -1.700  0.09527 .  
merg$Rearing_Temp  0.03887    0.02200   1.767  0.08319 .  
merg$Axis.1       -0.85399    0.61446  -1.390  0.17062    
merg$Axis.2       -2.42734    1.25523  -1.934  0.05870 .  
merg$Axis.3       -6.12416    1.46081  -4.192  0.00011 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.4724 on 51 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.3278,    Adjusted R-squared:  0.2751 
F-statistic: 6.218 on 4 and 51 DF,  p-value: 0.0003732


Page 84: 2016-10-12]. Updating climate cascade to do list.

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • Go over updated figures
      • Starting to write: working title-Shifts in the reaction norms of heat shock protein gene expression accompany evolutionary innovations in thermal tolerance of forest ants
    • Multiple stressors ms:

      • Sent SHC another version
    • Range limits ms: SHC lab gave verbal edits:

      • focus on 1 end of thermal niche breadth(although it is nice to mention it because CTmin decreases across lat)--CTmin.
      • Dicussion needs to talk about cold adaptation; why trade-offs?
      • Walk through results better
    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • in reference to missing samples
      • Fit in time to process Curtis' samples.
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: should be getting data soon

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Talk title: Northern range limits of a common forest ant is associated with trade-offs in cold physiology
    • Apply for funding. Suitor Travel Grant Deadline is october 31
    • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
  • Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
      • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.



Page 85: 2016-10-14. Paper note: Puentes, A., G. Granath, and J. Ågren. 2016. Similarity in G matrix structure among natural populations of Arabidopsis lyrata. Evolution 70:2370–2386.

Similar paper here: Page 60: 2016-09-01. Paper notes: Paccard A, Van Buskirk J, Willi Y, Eckert CG, Bronstein JL. 2016. Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence. The American Naturalist.

Method differences:
But Puentes et al. focus on A. lyrata in thier native range(Norway-Sweden) and in the field, and Paccard et al. 2016 use populations from USA-Cananda in lab conditions. Peuntes uses 5 trais, Paccard used 10 traits. One of Cortlett Wood's papers suggests that the number of traits can alter how G changes among environments. Check what traits were used between studies.

Summary of findings: G is stable between Norway and Sweden populations



Page 86: 2016-10-14. Wiley House Style Guide

I'll need to follow these general writing rules for submitting a ms to Evolution.

Use of that and which

* That is used for defining or restrictive clauses:   
	* The patient made a list of the symptoms that were most troublesome   

A defining clause is specific (limiting) to a particular person or thing; i.e., the patient had to list
only those particular symptoms that were most troublesome.    

* Which is used in nondefining or nonrestrictive clauses:    
	* The patient made a list of the symptoms, which were most troublesome    

A nondefining clause is general (nonlimiting); it provides additional information, and the use of
commas is often important. In this example, all the symptoms were very troublesome.

Redundancy

Avoid using a modifying word when the intended meaning is inherent in a word already used.
Redundancy is obvious in examples such as the results were plotted graphically, past history, bright
blue in color, inactivates its activity, and completely filled. Does the term careful monitoring
suggest that the alternative is careless monitoring?

Balancing a sentence:

It is important to ensure that a sentence balances on either side of certain words (correlatives) that
emphasize similarity or contrast and that are used in parallel: both and and; either and or; neither
and nor; not only and but; between and and;whether and or. For example,“I swam both in the
morning and afternoon” should be “I swam both in the morning and in the afternoon”or “I swam
in both the morning and the afternoon.”Note the position of the preposition in. (See also the
section “Editing for Sense.”)

Key Points

• It is now acceptable to use the active or the passive voice.
• Use the past tense for the author’s methods and results, and the present tense for
interpretation and generally accepted “facts.”
• The subject and verbmust agree in number.
• “That” is defining;“which” is not.
• Check that articles (“a,”“an,” and “the”) are used correctly.
• Sentences must balance (e.g.,with “both … and …”).
• In comparisons (e.g.,with lower/higher/less/more),make sure it is clear what is being
compared with what.
• Avoid sexist, dehumanizing, and stereotypical language.

Punctuation

Semi colons and Colons

SEMICOLONS
• The semicolon is stronger than a comma but not as decisive as a full point. It can be used to
separate sentences (whereas a comma cannot).
• Use a semicolon before, and a comma after, the conjunctive adverbs however, that is,
nevertheless, etc.

COLONS
Colons are used to introduce material that restates, explains, enlarges upon, or summarizes
previous material. They also introduce items in a list set off from text (but a colon is not needed in
run-on lists introduced by the words for example, namely, including, etc.; e.g., in the sentence “The
dessert looks nice with fruit on it, for example: strawberries, raspberries, and blueberries” the
colon should not be there).
• In US spelling, if the material introduced by a colon consists of more than one sentence, or if
it is a formal statement, quotation, or speech in dialogue it should take a capital after the
colon. In UK spelling, a capital letter is not used after a colon (except in titles and subtitles).
• Ratios containing words should have a thin space on each side of the colon (e.g., the light :
dark cycle) but ratios containing numbers should be closed up (e.g., 16:8 h).

Key Points:

• Use commas to clarify sentences.
• Do not use a comma to separate sentences; use a semicolon (this is a particularly
common error before “however” and “nevertheless”).
• Do not use apostrophes with plural abbreviations (e.g.,ANOVAs, not ANOVA’s).
• For hyphenation, refer to your journal style sheet.
• Do not hyphenate adverbs ending in -ly (e.g., dermatologically tested soap).
• Use hyphens in compound terms to clarify meaning (e.g.,much-needed clothing).
• Use en dashes, not hyphens, for associations (e.g., dose–response curve).


Page 87: 2016-10-14. NSF post doc app meeting: Keller Lab

SK background to grant

NSF use to have bioinformatics post doc competition and replaced with narrowly defined one in bio. It has to fit into 1 or a couple bins: 1 of them isplant genome research program (PGRP; funds poplar). SK attend PGRP meetings as part of training missions seriously. They build a program and come in as cohort(post doc fellows) and they ahve extra training sessions with them. Post doc presents work and are well supported for 3 years. SK fits squarely into: economically important plant, genome wide approaches to the problem of plant growth/yield and response to stress and other challenges.

Project Summary

Project description

Large communication issue

  • What is new and novel? Kattia
  • Figure 3: analysis is of a single trait Hammer it down, multiple times, outside of fig legend and make it more clear.
  • HAMMER DOWN novelty is non-linear GxE interactions
  • Cant predict performance readily from 1 environment to another environment (that span the current and future climate)
  • Say you'll measure wood traits
  • Bring more genomics more important: Bring in population genetics into the proposal.
  • Add path analsysis
  • Come up with precise alleles of what is adaptive.
  • Fig 1 C. put an ellipse for central population:
  • Set margins to 1 inch around.
  • heavy lifting (SK): bring emphasis on gene expression way up (genetic variation among genotpes in their transcriptional response to that variation); ID genes or networks of genes that show differences in expression or organization. What parts of the transcription? GO, pathways? Genes in trade-offs in few networks or overdispered across a network, relative to the total transcriptome. Stress response genes (Hsps)? Phenology associated genes (circadian clock). How can that be pulled out using the kingsolver method. (Not just as a tool that is cool to use, but as a question with an appropriately matched tool).
  • Look at the SNPs. include in
  • There is gxp from fairbanks and indian head. "Timing for success title"
  • Karl: pair down first paragraph; reduce in length
  • SK, focus on the major ideas

  • Be more explicit about what the trait is used for Gmatrix.
  • genetically based differences to identify GxE

Dissertation Abstract

Data management



Page 88: 2016-10-18. Climate cascade meeting

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • Go over updated figures
      • figure 3, SHC says to switch back branches
      • figure 4, color code by habitat type, NJG:don't use dot dash, use dash
      • Starting to write: working title-Shifts in the reaction norms of heat shock protein gene expression accompany evolutionary innovations in thermal tolerance of forest ants
      • need to start writing methods and results
    • Multiple stressors ms:

      • Sent SHC another version ; should submit soon
    • Range limits ms: SHC lab gave verbal edits:

      • focus on 1 end of thermal niche breadth(although it is nice to mention it because CTmin decreases across lat)--CTmin.
      • Dicussion needs to talk about cold adaptation; why trade-offs?
      • Walk through results better
    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project: should be getting data soon

  • Attending SICB - Jan 4-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)

    • Talk title: Northern range limits of a common forest ant is associated with trade-offs in cold physiology

    • Apply for funding. Suitor Travel Grant Deadline is october 31

      • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
      • Application submitted today 2016-10-18
  • Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
      • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 89: 2016-10-25. Climate cascade updated list

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • figure 3, SHC says to switch back branches
      • Starting to write: working title-Shifts in the reaction norms of heat shock protein gene expression accompany evolutionary innovations in thermal tolerance of forest ants
      • need to start writing methods and results; submit to MBE
    • Multiple stressors ms:

      • submitted 2016-10-24
    • Range limits ms: SHC lab gave verbal edits:

      • focus on 1 end of thermal niche breadth(although it is nice to mention it because CTmin decreases across lat)--CTmin.
      • Dicussion needs to talk about cold adaptation; why trade-offs?
      • Walk through results better
    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
    • Modulation of Hsp ms:

      • make fig 2 without spline curves with just points
      • grab elevation data for each sampling point in R
  • Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)

    • Talk title: Northern range limits of a common forest ant is associated with trade-offs in cold physiology

    • Apply for funding. Suitor Travel Grant Deadline is october 31

      • Wrote up suiter award app. I need to find out pricing (~ $1000) and then get everything signed. Waiting to find better flight prices.
      • Application submitted today 2016-10-18
  • Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
      • Dissertation Abstract is in multiple paragraphs, but for dissertation itself, make 1 paragraph
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 90: 2016-10-25. Meeting with M Pespeni

Meeting time, Wednesday 2-4; 2016-10-26

Things to discuss

  • Potential post doc oppportunity at MBL(Marine Biological Laboratory)

    • Previous email pitch with prospective post doc mentor
A question that excites me is how organisms persist and respond to environmental change in natural populations?
( This falls into 2 strategic themes of MBL: comparative evolution and genomics, and organismal adaptation and resiliency to climate change) Well, response to selection depends on their quantitative genetic architecture (variance-covariance G matrix) and selection gradient. 
Monogonont rotifers seem like a really great system to explore this question with a combination of field surveys, and lab studies. For example, since their lifespan is relatively short, there should be a lot of evolutionary responses within a season.
So this would involve sampling rotifers throughout the season (4-6 times), then genotyping (GBS or rad-seq, maybe whole genome sequencing if its not too large) and establishing clones each time. Genotyping would detect shifts in allele frequencies with respect to the environment that changes, signature of evolution.
Establishing clones would allow one to assess the evolutionary potential at each point in the season by estimating the variance-covariance G matrix. Selection should erode genetic variation, so G should be altered throughout the season that may hinder or facilitate future responses.
And evolutionary potential is really unique in rotifers because they can be clonal or mate. So I'd be interested in comparing G between these life strategies. 
The problem with a G matrix, is that we have no clue what the key molecular players are: so to tackle this problem, one could leverage the collected data into a qtl analysis too.  

I think it is fun to think about the evolutionary potential to environmental change for organisms that can switch from asexual to sexual reproduction. If you compare the G matrix between them, sexually produced offspring populations should have more genetic variance than clonal offspring populations. These animals are resilient to environmental change because of this! So it'd be cool to compare G between asexual vs sexual and whether trade-offs can shift among traits.

Melissa advice; write down questions, hypotheses and aims that will help facilitate the discussion

  • sequencing for ecological genomics? : multiepex individuals , you'll need 1-2x converage: or pool individuals and estimate allele frequencies (sequence RNA or DNA); if RNA, then you'll have potential for allele-biased expression influencing allele freq estimates. If DNA gnoemics from a pooled sample, then playing field is level, but genomes are big. 2 ways to do it: HARP(genotype parentals(known)-then subsequent genotype larvae; needs and requires low coverage---then reconstruct allele frequencies).
  • How many individuals per pop (10-100?) depends on how large your pop size (only need a few individuals)? If small pop--need more and there will be more random chance. Look up Christian Slaughter (experimental evolution). Look up papers ; power analyses.
  • GTA for ecological genomics

2016-10-27 Brent's thoughts

Ask about Isofemale lines

  • look up genome size (it's .35 pg)
  • What is changing G? What is the predictive power? model it.
  • Try to talk to Mike Angiletta, Rus Lande. (Genetic accomodation and assimilation)


Page 91: 2016-10-26 SICB meeting talk

details for my talk

125-7 Sunday, Jan. 8 11:45



Page 92: 2016-10-27. Proteome stability project update

  • reminder: generated unfolding reaction norms for 6 ant colonies (3 colonies per species).

  • received data from Bethany 2016-10-26

    • excel sheets wit relative abundance to first sample is in: 2016Protein_stability_evolution/Data/2016/10Oct

      • in this path, you'll see 3 folders, 1 set of samples queried against 18 species (it actually has a combo of ants/microbes because Bethany just took the top 18 searches) from uniprot. The other folder queries the NCBI database. And the last folder contains raw mass spec files.
  • Bethany is going to run more of the sample to see if we can ID more proteins.



Page 93: 2016-10-31. CTmax and Hsp reaction norm stats

Stats overview:

  1. Effect of local environment (Tmax and habitat type) on basal xp and other parameters.

Basal xp

 
summary(lm(b70~bio5+habitat_v2,data=b70))
Call:
lm(formula = b70 ~ bio5 + habitat_v2, data = b70)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.10674 -0.34255  0.07049  0.44475  1.56186 
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)          10.915110   1.957855   5.575 1.74e-06 ***
bio5                  0.005714   0.006543   0.873    0.388    
habitat_v2flat woods -0.124177   0.365522  -0.340    0.736    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.87 on 41 degrees of freedom
Multiple R-squared:  0.01836,   Adjusted R-squared:  -0.02952 
F-statistic: 0.3835 on 2 and 41 DF,  p-value: 0.6839
summary(lm(b83~bio5+habitat_v2,data=b83))
Call:
lm(formula = b83 ~ bio5 + habitat_v2, data = b83)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.16408 -0.49336  0.03001  0.64313  1.96466 
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)          12.751247   2.132030   5.981 2.34e-07 ***
bio5                 -0.002689   0.007140  -0.377    0.708    
habitat_v2flat woods -0.480410   0.362781  -1.324    0.191    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.9811 on 50 degrees of freedom
Multiple R-squared:  0.06047,   Adjusted R-squared:  0.02289 
F-statistic: 1.609 on 2 and 50 DF,  p-value: 0.2103
summary(lm(b40~bio5+habitat_v2,data=b40))
Call:
lm(formula = b40 ~ bio5 + habitat_v2, data = b40)
Residuals:
    Min      1Q  Median      3Q     Max 
-1.7137 -0.6858 -0.1241  0.3196  3.0774 
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)          13.721471   2.714855   5.054 1.36e-05 ***
bio5                  0.004703   0.009120   0.516    0.609    
habitat_v2flat woods -0.381890   0.509208  -0.750    0.458    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.123 on 35 degrees of freedom
Multiple R-squared:  0.01669,   Adjusted R-squared:  -0.0395 
F-statistic: 0.297 on 2 and 35 DF,  p-value: 0.7449

Hsp70 (hsc70-4 h2) params (slope,Tm,max)

 
apply(b[,3:5],2,function(x){summary(lm(x~b$bio5+b$habitat_v2))})
$FC_hsc70_1468_max
Call:
lm(formula = x ~ b$bio5 + b$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-20.536  -8.414  -1.652   4.839  30.045 
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            -0.90802   28.24097  -0.032 0.974489    
b$bio5                  0.13378    0.09449   1.416 0.163567    
b$habitat_v2flat woods 20.35661    4.86449   4.185 0.000127 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 12.34 on 46 degrees of freedom
Multiple R-squared:  0.4224,    Adjusted R-squared:  0.3973 
F-statistic: 16.82 on 2 and 46 DF,  p-value: 3.288e-06
$FC_hsc70_1468_slope
Call:
lm(formula = x ~ b$bio5 + b$habitat_v2)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.91667 -0.22656  0.08771  0.27554  0.87662 
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)   
(Intercept)            0.213328   1.023087   0.209  0.83575   
b$bio5                 0.002091   0.003423   0.611  0.54431   
b$habitat_v2flat woods 0.494706   0.176226   2.807  0.00731 **
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.4471 on 46 degrees of freedom
Multiple R-squared:  0.2228,    Adjusted R-squared:  0.189 
F-statistic: 6.595 on 2 and 46 DF,  p-value: 0.003032
$FC_hsc70_1468_Tm
Call:
lm(formula = x ~ b$bio5 + b$habitat_v2)
Residuals:
     Min       1Q   Median       3Q      Max 
-2.23057 -0.46633 -0.00151  0.62405  1.24574 
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)            35.043684   1.956972  17.907  < 2e-16 ***
b$bio5                  0.003766   0.006548   0.575 0.568014    
b$habitat_v2flat woods  1.372953   0.337088   4.073 0.000181 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8552 on 46 degrees of freedom
Multiple R-squared:  0.3566,    Adjusted R-squared:  0.3287 
F-statistic: 12.75 on 2 and 46 DF,  p-value: 3.931e-05

Hsp83 params (slope,Tm,max)

 
apply(u[,9:11],2,function(x){summary(lm(x~u$bio5+u$habitat_v2))})
$FC_Hsp83_279_max
Call:
lm(formula = x ~ u$bio5 + u$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-7.8432 -2.7507 -0.7032  2.3143 11.2074 
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)   
(Intercept)             8.059606   8.941439   0.901  0.37208   
u$bio5                 -0.002729   0.029897  -0.091  0.92766   
u$habitat_v2flat woods  4.720030   1.550712   3.044  0.00386 **
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 4.06 on 46 degrees of freedom
Multiple R-squared:  0.2054,    Adjusted R-squared:  0.1709 
F-statistic: 5.947 on 2 and 46 DF,  p-value: 0.005045
$FC_Hsp83_279_slope
Call:
lm(formula = x ~ u$bio5 + u$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-1.8619 -0.5948  0.1370  0.6879  1.3637 
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)            -1.056652   1.865514  -0.566    0.574
u$bio5                  0.008211   0.006238   1.316    0.195
u$habitat_v2flat woods  0.301698   0.323536   0.933    0.356
Residual standard error: 0.8471 on 46 degrees of freedom
Multiple R-squared:  0.09876,   Adjusted R-squared:  0.05957 
F-statistic:  2.52 on 2 and 46 DF,  p-value: 0.09148
$FC_Hsp83_279_Tm
Call:
lm(formula = x ~ u$bio5 + u$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-4.4767 -0.7621  0.1731  0.9167  2.6581 
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            31.80124    3.37214   9.431 2.54e-12 ***
u$bio5                  0.01076    0.01128   0.955 0.344699    
u$habitat_v2flat woods  2.16554    0.58483   3.703 0.000569 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.531 on 46 degrees of freedom
Multiple R-squared:  0.3423,    Adjusted R-squared:  0.3137 
F-statistic: 11.97 on 2 and 46 DF,  p-value: 6.533e-05

Hsp40 (hsc70-4 h2) params (slope,Tm,max)

 
apply(n[,6:8],2,function(x){summary(lm(x~n$bio5+n$habitat_v2))})
$FC_hsp40_541_max
Call:
lm(formula = x ~ n$bio5 + n$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-7.8615 -3.3291 -0.6736  1.7653 10.5454 
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)  
(Intercept)             9.4754213 10.9534314   0.865   0.3917  
n$bio5                 -0.0009401  0.0367220  -0.026   0.9797  
n$habitat_v2flat woods  3.6490726  1.8969491   1.924   0.0609 .
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 4.749 on 44 degrees of freedom
Multiple R-squared:  0.1003,    Adjusted R-squared:  0.05945 
F-statistic: 2.454 on 2 and 44 DF,  p-value: 0.09765
$FC_hsp40_541_slope
Call:
lm(formula = x ~ n$bio5 + n$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-1.4300 -0.5157  0.2182  0.6412  1.3309 
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)            -0.295834   1.816631  -0.163    0.871
n$bio5                  0.005677   0.006090   0.932    0.356
n$habitat_v2flat woods  0.413173   0.314610   1.313    0.196
Residual standard error: 0.7877 on 44 degrees of freedom
Multiple R-squared:  0.1048,    Adjusted R-squared:  0.06411 
F-statistic: 2.576 on 2 and 44 DF,  p-value: 0.08755
$FC_hsp40_541_Tm
Call:
lm(formula = x ~ n$bio5 + n$habitat_v2)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.7066 -1.0076  0.2038  0.9873  3.5691 
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)            39.14520    3.84815  10.172 3.93e-13 ***
n$bio5                 -0.01175    0.01290  -0.911 0.367444    
n$habitat_v2flat woods  2.46904    0.66643   3.705 0.000588 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.669 on 44 degrees of freedom
Multiple R-squared:  0.2539,    Adjusted R-squared:   0.22 
F-statistic: 7.487 on 2 and 44 DF,  p-value: 0.00159

Summary: no sig effect of Tmax (bio5) on parameters, but habitat type does in some cases:

Table summary:

Parameterhsp83hsc70.4.h2hsp40
basalnonono
slopenoyesno
Tmyesyesyes
maxyesyesno



Page 94: 2016-10-31; 2016-11-01. Climate cascade meeting setup and notes

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • figure 3, SHC says to switch back branches
      • Wrote up methods and results
      • Submit to? MBE, evolution, Goerge Somero and Brent think PNAS is a good fit. SHC and NJG thoughts?
      • reference for rad-seq:HF3-picea,fbragg2-floridana,KH4-ashmeadi,Duke6-mariae,ala2-miamiana, Lex13-rudis
    • Multiple stressors ms:

      • submitted 2016-10-24
      • in review 2016-11-01
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

    • Thermal niche ms: Lacey and I working on discussion

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
    • Modulation of Hsp ms:

      • make fig 2 without spline curves with just points (done)
      • grab elevation data for each sampling point in R (done)
  2. Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)

    • Apply for funding. Suitor Travel Grant Deadline is october 31

      • Wrote up suiter award app Application submitted today 2016-10-18

        • Bought hotel, rooming with Emily M., need to buy airplane tickets
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 95: 2016-11-02. Ancestral trait reconstruction and CTmax PGLS ANBE common garden

Ancestral trait reconstruction

 
cols
<-ifelse(esthab[,1]>  
esthab[,2],"blue","red")
par(mar=c(1,1,1,1))
plot(ult.tree1,cex=.5)
nodelabels(pch=19,cex=.75,col=cols)
#obj<-contMap(ult.tree1,trait,plot=FALSE,fsize=.1,method="fastAnc")
#obj$cols[]<-
obj<-setMap(obj,colors=colorRampPalette(c("black","gray","red"))(length(obj$cols)))
plot(obj,legend=FALSE)
nodelabels(pch=19,cex=3,col=cols)

Using ancTHRESH: Paper here;troubleshooting error

Species level ancestral state reconstruction

 
####using ancThresh (revell 2014 evolution)
habitat<-as.character(sm.dat2$Habitat)
names(habitat)<-spec.tree$tip.label
er<-ancThresh(spec.tree,habitat,model="BM",ngen=20000)
$ace
          DF         FW
9  0.9411765 0.05882353
10 1.0000000 0.00000000
11 0.9411765 0.05882353
12 1.0000000 0.00000000
13 1.0000000 0.00000000
14 1.0000000 0.00000000
15 0.1176471 0.88235294
$mcmc
    9 10 11 12 13 14 15
1  FW FW FW FW FW FW FW
2  DF DF DF DF DF DF FW
3  DF DF DF DF DF DF FW
4  DF DF DF DF DF DF FW
5  FW DF FW DF DF DF FW
6  DF DF DF DF DF DF FW
7  DF DF DF DF DF DF FW
8  DF DF DF DF DF DF FW
9  DF DF DF DF DF DF FW
10 DF DF DF DF DF DF FW
11 DF DF DF DF DF DF FW
12 DF DF DF DF DF DF DF
13 DF DF DF DF DF DF FW
14 DF DF DF DF DF DF DF
15 DF DF DF DF DF DF FW
16 DF DF DF DF DF DF FW
17 DF DF DF DF DF DF FW
18 DF DF DF DF DF DF FW
19 DF DF DF DF DF DF FW
20 DF DF DF DF DF DF FW
21 DF DF DF DF DF DF FW
$par
     gen DF  FW     logLik
1      0  0 Inf -20.447477
2   1000  0 Inf -15.497509
3   2000  0 Inf  -7.454956
4   3000  0 Inf  -7.583405
5   4000  0 Inf -12.443948
6   5000  0 Inf  -7.824642
7   6000  0 Inf -18.411281
8   7000  0 Inf  -8.957609
9   8000  0 Inf -10.366720
10  9000  0 Inf -16.032346
11 10000  0 Inf -10.064034
12 11000  0 Inf -12.232852
13 12000  0 Inf -11.150292
14 13000  0 Inf -10.575092
15 14000  0 Inf -11.406253
16 15000  0 Inf -18.842795
17 16000  0 Inf -13.001441
18 17000  0 Inf -10.961662
19 18000  0 Inf -10.054596
20 19000  0 Inf -13.251417
21 20000  0 Inf -13.367340
$liab
    ashmeadi  floridana      picea      rudis   miamiana lamellidens
1  0.4256323 0.41631348 -0.9982783 -0.7611795 -0.2870708  -0.7228374
2  1.7161387 2.01928329 -0.5807896 -2.7040955 -2.1537732  -1.3879036
3  0.2283514 0.33912611 -1.4167395 -0.8156619 -2.1513080  -1.5626112
4  0.2245830 0.04840176 -0.1672812 -0.5182768 -1.4955228  -1.2845957
5  2.8412873 2.52791039 -0.9945787 -0.1217164 -1.0169444  -0.8199481
6  0.1611044 0.07884604 -1.6873462 -1.9551489 -2.5062990  -1.8735545
7  0.6062956 0.67119993 -1.7010454 -3.1098352 -3.5942080  -3.6599400
8  0.2781314 0.90142051 -0.9775805 -1.4564663 -2.0262664  -1.9955650
9  0.4831741 0.32616809 -1.2045168 -1.4714718 -1.8546322  -1.9443720
10 0.9545092 0.91442789 -1.9678349 -2.8803130 -2.0902628  -2.1420066
11 0.5334539 0.45214518 -0.6975138 -1.7053550 -1.0307576  -1.3671555
12 0.3455715 0.36069694 -0.8319524 -1.3187262 -0.3870102  -0.6778155
13 1.0041606 0.14710811 -1.5117681 -1.1249621 -2.0614504  -1.6515543
14 0.3898680 0.07794064 -2.5767746 -2.2195374 -2.0482449  -2.5311433
15 0.1438718 0.01582491 -0.6168032 -1.8867342 -2.1514162  -2.2116893
16 1.5174549 1.25039739 -0.3146283 -0.6646803 -2.9459244  -2.4065327
17 0.2949082 0.79497182 -2.3475672 -1.3544484 -1.7933900  -1.0633168
18 0.1754723 0.07905511 -1.7017423 -2.8025226 -2.3548623  -2.7766376
19 0.6090604 0.62077613 -2.8309318 -2.2609481 -2.4802131  -2.9229599
20 0.3999724 0.84360557 -3.1013779 -2.7228427 -3.7007126  -3.2687614
21 0.7346061 0.86140836 -2.1879653 -2.5777420 -3.3467673  -3.9166340
        fulva tennesseensis          9          10         11         12
1  -0.1323211    -0.4694033  0.1077790  0.05401888  0.1439697  0.5549107
2  -1.3488986    -0.9985338 -1.0447443 -0.89772529 -1.3726393 -1.6255353
3  -1.0540075    -0.8284915 -0.2338892 -1.07612349 -0.5740115 -1.0216461
4  -0.8706067    -1.3873548 -0.4220714 -1.45708985 -0.1885166 -0.4826553
5  -0.4714702    -0.3575748  0.3448237 -0.79814696  0.4179758 -0.1106286
6  -2.0032554    -1.5914376 -1.1376738 -1.68649095 -0.9229725 -1.5736772
7  -2.8018002    -3.0551338 -1.8844310 -2.27322487 -1.7170136 -2.4081014
8  -2.3101088    -2.1159034 -1.4001121 -2.09323137 -1.4599777 -1.8363667
9  -2.9641505    -2.4055435 -1.0906425 -2.44676880 -0.8556195 -0.3708003
10 -0.8302079    -1.8660746 -1.5512891 -1.57882060 -0.9111552 -0.7840139
11 -1.1688755    -0.5233950 -1.0694070 -1.12396533 -1.3927681 -0.8758065
12 -0.8464924    -1.0075126 -1.4279378 -1.32894559 -0.8023390 -1.1667292
13 -0.5218728    -0.5705261 -0.0381062 -0.92343185 -0.4744984 -1.3058079
14 -0.6052192    -0.3901746 -1.3237021 -0.60220033 -0.6998386 -1.6929037
15 -1.2232572    -1.3633033 -0.3002129 -1.09482578 -1.0404010 -0.8156088
16 -1.6465250    -2.5813912 -1.9776983 -2.28317185 -2.0259641 -1.1658657
17 -3.3390536    -3.0821085 -1.7921216 -3.21916257 -2.0360532 -2.6290063
18 -2.8353118    -2.5476584 -2.4669142 -2.85649615 -2.2842481 -2.4311806
19 -2.2636787    -2.3547350 -1.7062219 -1.86053981 -1.6758183 -1.9448948
20 -2.2528318    -2.1913204 -1.6877972 -1.97671417 -2.1753948 -2.6389801
21 -0.9965233    -0.5414665 -0.4247154 -0.76066224 -0.6674432 -1.9868298
           13         14          15
1   0.9519656  0.7427504  0.24005246
2  -1.3613162 -1.6237741  1.61824721
3  -1.0603488 -1.7249034  0.51079667
4  -0.5200048 -1.3974409  0.28723904
5  -0.4768141 -1.2742356  2.25125896
6  -2.3110323 -2.0833774  0.16007229
7  -3.6709435 -3.6396813  0.98393423
8  -1.9847607 -2.2242295  0.69042714
9  -1.3939044 -1.9765742  0.31119880
10 -1.5328568 -1.8498664  1.16199792
11 -1.5364744 -1.0508674  0.50063895
12 -0.3373547 -0.1329506 -0.16251270
13 -1.2442089 -1.5792052  0.10020199
14 -1.6824202 -2.2044414 -0.04600028
15 -1.7298317 -2.0001838  0.55174349
16 -1.4318329 -2.2727758  1.01123041
17 -2.2424728 -1.5377536  0.31713522
18 -2.8320154 -2.1532767  0.21849413
19 -2.2843315 -2.4451599  0.48568731
20 -3.4562176 -3.2262318  0.26999207
21 -2.8093678 -3.7144363  0.53795324

It automatically plots the results:

Reference for tree with node labels

Doing pgls in 3 ways:

  1. Using colonies as tips (breaks assumptions because of reticulate evolution)
  2. Forcing polytomies with species as replicates
  3. Just doing species themselves (8)

1. Using colonies as tips (breaks assumptions because of reticulate evolution)

 
library(caper)
aph_phylo1$colony.id2<-as.character(aph_phylo1$colony.id2)
ult.tree1<-makeLabel(ult.tree1)
aph_phylo1$habitat_v2<-droplevels(aph_phylo1$habitat_v2)
pp<-comparative.data(phy=ult.tree1,data=aph_phylo1,names.col=colony.id2, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
momo<-pgls(KO_temp_worker~bio5+habitat_v2,data=pp,lambda="ML",bounds=list(lambda=c(0.001,1)))
summary(momo)
Call:
pgls(formula = KO_temp_worker ~ bio5 + habitat_v2, data = pp, 
    lambda = "ML", bounds = list(lambda = c(0.001, 1)))
Residuals:
    Min      1Q  Median      3Q     Max 
-2.3636 -0.6161 -0.1511  0.3177  2.8311 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [ ML]  : 0.001
   lower bound : 0.001, p = 1    
   upper bound : 1.000, p = < 2.22e-16
   95.0% CI   : (NA, 0.517)
delta  [Fix]  : 1.000
Coefficients:
                       Estimate Std. Error t value  Pr(>|t|)    
(Intercept)          37.2440770  1.0902152 34.1621 < 2.2e-16 ***
bio5                  0.0128318  0.0036686  3.4978 0.0007098 ***
habitat_v2flat woods  1.3750216  0.2575557  5.3387 6.157e-07 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8605 on 97 degrees of freedom
Multiple R-squared: 0.4051, Adjusted R-squared: 0.3929 
F-statistic: 33.03 on 2 and 97 DF,  p-value: 1.147e-11

It looks like the PGLS is using lambda of 0. So I tried estimating lambda and then plugging it in the PGLS model

 
#phylogenetic signal
x<-aph_phylo1$KO_temp_worker
names(x)<-aph_phylo1$colony.id2
phylosig(ult.tree1,x,test=TRUE,method="lambda")
$lambda
[1] 0.4833368
$logL
[1] -128.4395
$logL0
[1] -151.6493
$P
[1] 9.5454e-12
#phylosig(ult.tree1,x,test=TRUE,method="K",nsim=1000)
#redoing pgls with lambda from phylosig
momo3<-pgls(KO_temp_worker~habitat_v2+bio5,data=pp,lambda=0.4833368)
summary(momo3)
Call:
pgls(formula = KO_temp_worker ~ habitat_v2 + bio5, data = pp, 
    lambda = 0.4833368)
Residuals:
    Min      1Q  Median      3Q     Max 
-2.3928 -0.3833  0.1074  0.8404  3.3408 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [Fix]  : 0.483
delta  [Fix]  : 1.000
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)          38.4681831  2.4673203 15.5911   <2e-16 ***
habitat_v2flat woods  0.5009582  0.5160753  0.9707   0.3341    
bio5                  0.0093601  0.0080294  1.1657   0.2466    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.082 on 97 degrees of freedom
Multiple R-squared: 0.02726,    Adjusted R-squared: 0.007207 
F-statistic: 1.359 on 2 and 97 DF,  p-value: 0.2617 

2. Forcing polytomies with species as replicates

 
aph_phylo2$colony.id2<-as.character(aph_phylo2$colony.id2)
ult2.tree<-makeLabel(ult2.tree)
aph_phylo2$habitat_v2<-droplevels(aph_phylo2$habitat_v2)
pp<-comparative.data(phy=ult2.tree,data=aph_phylo2,names.col=colony.id2, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
momo<-pgls(KO_temp_worker~bio5+habitat_v2,data=pp,lambda="ML",bounds=list(lambda=c(0.001,1)))
summary(momo)
Call:
pgls(formula = KO_temp_worker ~ bio5 + habitat_v2, data = pp, 
    lambda = "ML", bounds = list(lambda = c(0.001, 1)))
Residuals:
    Min      1Q  Median      3Q     Max 
-5.2426 -1.0208 -0.0880  0.9807  5.7995 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [ ML]  : 0.991
   lower bound : 0.001, p = 0.1627
   upper bound : 1.000, p = 0.69339
   95.0% CI   : (NA, NA)
delta  [Fix]  : 1.000
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)          38.9471677  2.2565730 17.2594   <2e-16 ***
bio5                  0.0080535  0.0067643  1.1906   0.2367    
habitat_v2flat woods -0.0036539  0.4282500 -0.0085   0.9932    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.839 on 97 degrees of freedom
Multiple R-squared: 0.01442,    Adjusted R-squared: -0.005903 
F-statistic: 0.7095 on 2 and 97 DF,  p-value: 0.4944 

Again, try to estimate lambda and then plug and chug

 
x<-aph_phylo2$KO_temp_worker
names(x)<-aph_phylo2$colony.id2
phylosig(ult2.tree,x,test=TRUE,method="lambda")
$lambda
[1] 0.9759065
$logL
[1] -124.9107
$logL0
[1] -151.6493
$P
[1] 2.616073e-13
momo3<-pgls(KO_temp_worker~habitat_v2+bio5,data=pp,lambda=0.9759065)
summary(momo3)
Call:
pgls(formula = KO_temp_worker ~ habitat_v2 + bio5, data = pp, 
    lambda = 0.9759065)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.9077 -1.1334  0.0055  1.0044  5.3637 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [Fix]  : 0.976
delta  [Fix]  : 1.000
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)          39.2879592  2.4115458 16.2916   <2e-16 ***
habitat_v2flat woods  0.0118194  0.4401407  0.0269   0.9786    
bio5                  0.0069203  0.0073845  0.9371   0.3510    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 1.766 on 97 degrees of freedom
Multiple R-squared: 0.009022,   Adjusted R-squared: -0.01141 
F-statistic: 0.4416 on 2 and 97 DF,  p-value: 0.6443 

3. Just doing species themselves (8)

 
#PGLS with caper
spec.tree<-makeLabel(spec.tree)
smp<-comparative.data(phy=spec.tree,data=sm.dat2,names.col=Species, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)
spmod<-pgls(CTmax~Habitat+Tmax,data=smp,lambda="ML")
#spmod<-pgls(CTmax~Habitat,data=smp,lambda=0.885536,bounds=list(lambda=c(0.001,1)))
summary(spmod)
Call:
pgls(formula = CTmax ~ Habitat + Tmax, data = smp, lambda = "ML")
Residuals:
    Min      1Q  Median      3Q     Max 
-0.7707 -0.1147  0.0567  0.3244  0.5081 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [ ML]  : 0.000
   lower bound : 0.000, p = 1    
   upper bound : 1.000, p = 0.0072118
   95.0% CI   : (NA, 0.738)
delta  [Fix]  : 1.000
Coefficients:
             Estimate Std. Error t value  Pr(>|t|)    
(Intercept) 37.500342   2.914324 12.8676 5.048e-05 ***
HabitatFW    1.462473   0.435376  3.3591   0.02013 *  
Tmax         0.011812   0.009520  1.2407   0.26975    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.4878 on 5 degrees of freedom
Multiple R-squared: 0.7947, Adjusted R-squared: 0.7125 
F-statistic: 9.674 on 2 and 5 DF,  p-value: 0.01911 
profile_lambda=pgls.profile(spmod, which="lambda") 
plot(profile_lambda)
n<-sm.dat2$CTmax
names(n)<-sm.dat2$Species
phylosig(spec.tree,n,method="lambda",test=TRUE)
$lambda
[1] 0.885536
$logL
[1] -8.958222
$logL0
[1] -10.06035
$P
[1] 0.1376303
spmod<-pgls(CTmax~Habitat+Tmax,data=smp,lambda=0.885536)
summary(spmod)
Call:
pgls(formula = CTmax ~ Habitat + Tmax, data = smp, lambda = 0.885536)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.93013 -0.02903  0.07964  0.38357  1.47947 
Branch length transformations:
kappa  [Fix]  : 1.000
lambda [Fix]  : 0.886
delta  [Fix]  : 1.000
Coefficients:
              Estimate Std. Error t value  Pr(>|t|)    
(Intercept) 39.3419794  4.4119919  8.9171 0.0002954 ***
HabitatFW    1.6291565  0.9278322  1.7559 0.1394628    
Tmax         0.0055482  0.0145875  0.3803 0.7193135    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8271 on 5 degrees of freedom
Multiple R-squared: 0.467,  Adjusted R-squared: 0.2538 
F-statistic:  2.19 on 2 and 5 DF,  p-value: 0.2074 



Page 96: 2016-11-03. notes from skype meeting with KG, potential post doc opp

Marine Biological Labs, Hibbitt Early Career Fellows Program

about fellowship: its brand new for MBL; its trying to bring in new investigators early in their careers

MBL; resident and visiting scientists; there are a lot of courses in the summer (10 days to 6 weeks); teachers come from all of over the world; Whitman scholars are fellowships that PIs can establish labs; groups of researchers meet here;

Other foundations:

  1. Charles King foundation/trust
  2. Life sciences research foundation
  3. Ford Foundation
  4. Hell and Hay whitney foundation? check on deadlines

There is a genome for 15 different species. huge range in genome sizes, why?

Bioinformatics; david, mark welsh (bay paul center); Lots of peopel do pool-seq; own Illumina hi-seq ; miseq; sanger sequencing. play up bioinformatics resource;

MBL are conveners; convening power



Page 97: 2016-11-04. ms in prep

first authored

  1. multiple stressors (submitted)
  2. Curtis, stress in nature; submit to functional ecology
  3. rxn norm of Hsps and CTmax; submit to PNAS
  4. range limits paper with Jordan and Megan ; submit to American Naturalist
  5. Modulation of Hsp ms (in review)
  6. Proteome stability project (a stretch...)

with collaborators

  1. Comparative ramp papers (CP lead?); submit to current biology?
  2. (co-lead author) thermal niche paper with LChick; submit molecular ecology?
  3. CNP work with katie miller (submit where? )



Page 98: 2016-11-08. climate cascade meeting

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • figure 3, SHC says to switch back branches
      • Wrote up methods and results-- go over with Nick then send to SHC
      • Submit to PNAS
    • Multiple stressors ms:

      • submitted 2016-10-24
      • in review 2016-11-01
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

    • Thermal niche ms: Lacey and I working on discussion...eta?

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
  2. Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)

    • Apply for funding. Suitor Travel Grant Deadline is october 31

      • Wrote up suiter award app Application submitted today 2016-10-18

        • Bought hotel, rooming with Emily M., airplane tickets
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree

        • started outline
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.



Page 99: 2016-11-08. writing session with NJG

Writing Hsp reaction norm + CTmax ms in PNAS format

  1. Someting to explore: variance among colony level means of CTmax in open vs closed habitats

    • Narrow variance in warmer places could mean more stabilizing selection
  2. Try variance partitioning CTmax into Hsp, local environment, and phylogenetics

    • Make CTmax vs Tmax figures with overlay of habitat type.

      • regress against latitude and PCA of climate variables too
    • try framing in terms of integrating proximal and ultimate explanations

  3. put rxn norms in better context of theory; what is the alternative to hotter is better?

    • Frazier et al. 2006, AmNat; the alternative is shifts in rxn norm horizontally, but not vertically= perfect-compensation hypothesis. In other words, biochemical adaptation can overcome rate-limiting effects of low temperature so that rmax is independent of Topt. Not mentioned in this explanation is that there can be constraints at higher temperatures that can potentially cause this pattern.


1. among colony variance

 
ddply(Aph.dat,.(habitat_v2),summarize,CTmax=mean(KO_temp_worker),var=var(KO_temp_worker))
        habitat_v2    CTmax       var
1 deciduous forest 41.04248 0.9443724
2       flat woods 42.77917 0.1750000


PCA of cliamte variables

 
bclim<-princomp(scale(cbind(Aph.dat[,21:39])))
summary(bclim)
Importance of components:
                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5      Comp.6      Comp.7
Standard deviation     3.6328923 1.7748683 1.19556867 0.77430677 0.46454501 0.335626591 0.215453516
Proportion of Variance 0.7016431 0.1674725 0.07599067 0.03187406 0.01147273 0.005988581 0.002467848
Cumulative Proportion  0.7016431 0.8691156 0.94510623 0.97698029 0.98845302 0.994441598 0.996909446
knitr::kable(round(bclim$loadings[,1:2],3))
Comp.1Comp.2
bio1-0.269-0.035
bio2-0.144-0.354
bio3-0.268-0.059
bio40.2710.015
bio5-0.249-0.102
bio6-0.267-0.029
bio70.267-0.013
bio8-0.214-0.040
bio9-0.265-0.073
bio10-0.258-0.061
bio11-0.270-0.034
bio12-0.231-0.123
bio13-0.2300.171
bio140.078-0.495
bio15-0.2150.319
bio16-0.2380.148
bio170.058-0.514
bio18-0.2480.145
bio19-0.145-0.385


regression models; taking first two pcas that explain 86% of variation

 
pcmod<-lm(KO_temp_worker~Comp.1*habitat_v2+Comp.2*habitat_v2 ,data=Aph.dat)
summary(stepAIC(pcmod,direction="both"))
Call:
lm(formula = KO_temp_worker ~ Comp.1 + habitat_v2 + Comp.2, data = Aph.dat)
Residuals:
    Min      1Q  Median      3Q     Max 
-4.0136 -0.3372  0.1448  0.5228  1.5893 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          41.06999    0.10129 405.476  < 2e-16 ***
Comp.1               -0.04962    0.03006  -1.651   0.1020    
habitat_v2flat woods  1.56474    0.30657   5.104 1.68e-06 ***
Comp.2               -0.09366    0.05213  -1.797   0.0755 .  
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8862 on 96 degrees of freedom
Multiple R-squared:  0.3797,    Adjusted R-squared:  0.3603 
F-statistic: 19.59 on 3 and 96 DF,  p-value: 5.466e-10

regressions with Tmax, habitat

 
xxxxxxxxxx
umod<-lm(KO_temp_worker~bio5*habitat_v2 ,data=Aph.dat)
summary(stepAIC(umod,direction="both"))
Call:
lm(formula = KO_temp_worker ~ bio5 + habitat_v2, data = Aph.dat)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.8297 -0.3348  0.2332  0.5586  1.4826 
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)          37.237343   1.084085  34.349  < 2e-16 ***
bio5                  0.012855   0.003649   3.523 0.000652 ***
habitat_v2flat woods  1.376747   0.255980   5.378  5.2e-07 ***
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8605 on 97 degrees of freedom
Multiple R-squared:  0.4091,    Adjusted R-squared:  0.3969 
F-statistic: 33.58 on 2 and 97 DF,  p-value: 8.27e-12

Figure

regression with MAT

 
xxxxxxxxxx
umod<-lm(KO_temp_worker~bio1*habitat_v2 ,data=Aph.dat)
summary(stepAIC(umod,direction="both"))
lm(formula = KO_temp_worker ~ bio1 * habitat_v2, data = Aph.dat)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.8808 -0.2948  0.1394  0.5549  1.6231 
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)    
(Intercept)               40.289262   0.266504 151.177  < 2e-16 ***
bio1                       0.006325   0.002090   3.027  0.00317 ** 
habitat_v2flat woods       4.264228   2.013656   2.118  0.03679 *  
bio1:habitat_v2flat woods -0.015722   0.010713  -1.468  0.14549    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8744 on 96 degrees of freedom
Multiple R-squared:  0.3962,    Adjusted R-squared:  0.3773 
F-statistic: 20.99 on 3 and 96 DF,  p-value: 1.534e-10

regression with lattitude

 
xxxxxxxxxx
latmod<-lm(KO_temp_worker~lat*habitat_v2 ,data=Aph.dat)
summary(stepAIC(latmod,direction="both"))
Call:
lm(formula = KO_temp_worker ~ lat * habitat_v2, data = Aph.dat)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.9251 -0.2851  0.1050  0.5593  1.6421 
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)              43.26209    0.80838  53.517  < 2e-16 ***
lat                      -0.05748    0.02079  -2.765  0.00682 ** 
habitat_v2flat woods     -2.95972    2.90928  -1.017  0.31155    
lat:habitat_v2flat woods  0.13632    0.09109   1.497  0.13777    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8807 on 96 degrees of freedom
Multiple R-squared:  0.3874,    Adjusted R-squared:  0.3682 
F-statistic: 20.23 on 3 and 96 DF,  p-value: 3.043e-10


Hsps; pcas and variance partitioning of CTmax

 
xxxxxxxxxx
summary(pchsp)
Importance of components:
                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5     Comp.6
Standard deviation     2.1385967 1.3517804 1.07592411 1.00232658 0.84659220 0.84649220
Proportion of Variance 0.3906613 0.1560828 0.09887942 0.08581459 0.06121969 0.06120523
Cumulative Proportion  0.3906613 0.5467441 0.64562350 0.73143809 0.79265778 0.85386301
knitr::kable(round(pchsp$loadings[,1:7],3))
Comp.1Comp.2Comp.3Comp.4Comp.5Comp.6Comp.7
hsc70-0.073-0.5960.071-0.224-0.2170.0550.131
hsp83-0.023-0.593-0.0080.0980.2930.2920.428
hsp40-0.0230.0080.4610.803-0.1590.237-0.098
FC_hsc701468max-0.321-0.1600.404-0.273-0.043-0.006-0.451
FC_hsc701468slope-0.280-0.2860.2170.1890.130-0.629-0.008
FC_hsc701468Tm-0.3740.1570.226-0.133-0.245-0.2830.247
FC_hsp40541max-0.350-0.082-0.3240.129-0.0970.273-0.358
FC_hsp40541slope-0.292-0.149-0.5240.171-0.167-0.170-0.242
FC_hsp40541Tm-0.3680.063-0.2600.149-0.3230.1300.355
FC_Hsp83279max-0.3500.0570.153-0.2130.3530.440-0.207
FC_Hsp83279slope-0.2900.171-0.1450.1860.694-0.1670.129
FC_Hsp83279Tm-0.3510.3100.171-0.143-0.1190.1940.393

Some stats

 
xxxxxxxxxx
summary(lm(jj$KO_temp_worker~pchsp$scores[,1]+pchsp$scores[,2]+pchsp$scores[,3]))
Call:
lm(formula = jj$KO_temp_worker ~ pchsp$scores[, 1] + pchsp$scores[, 
    2] + pchsp$scores[, 3])
Residuals:
     Min       1Q   Median       3Q      Max 
-1.15358 -0.37044  0.04846  0.34646  1.54100 
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       41.570122   0.098692 421.211  < 2e-16 ***
pchsp$scores[, 1] -0.242155   0.046148  -5.247 6.55e-06 ***
pchsp$scores[, 2] -0.001745   0.073009  -0.024    0.981    
pchsp$scores[, 3]  0.121858   0.091727   1.328    0.192    
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.6319 on 37 degrees of freedom
Multiple R-squared:  0.4419,    Adjusted R-squared:  0.3967 
F-statistic: 9.767 on 3 and 37 DF,  p-value: 6.991e-05




Variance partitioning

 
xxxxxxxxxx
var10<- varpart(jj$KO_temp_worker, ~ Axis.1 + Axis.2+ Axis.3+ Axis.4+Axis.5+Axis.6+Axis.7+Axis.8+Axis.9, ~bio1+bio5+habitat_v2,~Hsppc1+Hsppc2,data=nw)
var10
plot(var10)
Partition of variance in RDA 
Call: varpart(Y = jj$KO_temp_worker, X = ~Axis.1 + Axis.2 + Axis.3 + Axis.4 +
Axis.5 + Axis.6 + Axis.7 + Axis.8 + Axis.9, ~bio1 + bio5 + habitat_v2, ~Hsppc1
+ Hsppc2, data = nw)
Explanatory tables:
X1:  ~Axis.1 + Axis.2 + Axis.3 + Axis.4 + Axis.5 + Axis.6 + Axis.7 + Axis.8 + Axis.9
X2:  ~bio1 + bio5 + habitat_v2
X3:  ~Hsppc1 + Hsppc2 
No. of explanatory tables: 3 
Total variation (SS): 26.477 
            Variance: 0.66191 
No. of observations: 41 
Partition table:
                      Df R.square Adj.R.square Testable
[a+d+f+g] = X1         9  0.72027      0.63906     TRUE
[b+d+e+g] = X2         3  0.64967      0.62126     TRUE
[c+e+f+g] = X3         2  0.41531      0.38454     TRUE
[a+b+d+e+f+g] = X1+X2 12  0.78605      0.69435     TRUE
[a+c+d+e+f+g] = X1+X3 11  0.76028      0.66936     TRUE
[b+c+d+e+f+g] = X2+X3  5  0.67973      0.63398     TRUE
[a+b+c+d+e+f+g] = All 14  0.80893      0.70604     TRUE
Individual fractions                                   
[a] = X1 | X2+X3       9               0.07206     TRUE
[b] = X2 | X1+X3       3               0.03668     TRUE
[c] = X3 | X1+X2       2               0.01169     TRUE
[d]                    0               0.21275    FALSE
[e]                    0               0.01861    FALSE
[f]                    0               0.00103    FALSE
[g]                    0               0.35322    FALSE
[h] = Residuals                        0.29396    FALSE
Controlling 1 table X                                  
[a+d] = X1 | X3        9               0.28482     TRUE
[a+f] = X1 | X2        9               0.07309     TRUE
[b+d] = X2 | X3        3               0.24944     TRUE
[b+e] = X2 | X1        3               0.05529     TRUE
[c+e] = X3 | X1        2               0.03029     TRUE
[c+f] = X3 | X2        2               0.01271     TRUE
---
Use functionrdato test significance of fractions of interest

Slightly better figure



Page 100: 2016-11-14 & 2016-11-15. climate cascade meeting

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • figure 3, SHC says to switch back branches
      • Wrote up methods and results-- go over with Nick then send to SHC
      • Submit to PNAS
    • Multiple stressors ms:

      • submitted 2016-10-24 ; in review 2016-11-01
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

    • Thermal niche ms: Lacey and I working on discussion...eta?

    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
  2. Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Support with Suiter Prize! $1,000
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree

        • started outline
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 101: 2016-11-16Hsp reaction norm stats; adding quadratic term

 
xxxxxxxxxx
lm(formula = KO_temp_worker ~ bio5 + habitat_v2 + I(bio5^2), 
    data = Aph.dat)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.6123 -0.3293  0.1297  0.4772  1.8485 
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)          -4.4102626 12.5885230  -0.350 0.726851    
bio5                  0.2990131  0.0862737   3.466 0.000792 ***
habitat_v2flat woods  1.5151487  0.2472431   6.128 1.96e-08 ***
I(bio5^2)            -0.0004877  0.0001469  -3.320 0.001275 ** 
---
Signif. codes:  0***0.001**0.01*0.05.0.1 ‘ ’ 1
Residual standard error: 0.8192 on 96 degrees of freedom
Multiple R-squared:   0.47, Adjusted R-squared:  0.4534 
F-statistic: 28.37 on 3 and 96 DF,  p-value: 3.191e-13


Page 102: 2016-11-22. climate cascade to do list

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • rewrite results, intro and send out to NJG and SHC
      • Submit to PNAS
    • Multiple stressors ms:

      • major revisions
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

    • Thermal niche ms: In my hands, get to it mid-december

      • actionable items:

        • recheck stats
        • recheck figures
        • make transitions between paragraphs in discussion
    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
  2. Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (December 1 2016 in SHC lab meeting ; Decemeber 7 2016 in EEEB)
    • Support with Suiter Prize! $1,000
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree

        • started outline
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 103: 2016-12-06. climate cascade update

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • rewrite results, intro and send out to NJG and SHC (methods done)
      • Submit to PNAS
    • Multiple stressors ms:

      • major revisions; addressing now

        • go over figures
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

    • Thermal niche ms: In my hands, get to it mid-december

      • actionable items:

        • recheck stats (are we using same dataset?)
        • recheck figures
        • make transitions between paragraphs in discussion (constructing outline)
    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
  2. Attending SICB - Jan 3-8 New Orleans, Give a talk about range limits paper.

    • Practice talks: (Decemeber 7 2016 in EEEB)
    • Support with Suiter Prize! $1,000
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree

        • started outline
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 104: 2016-12-19. climate cascade update

  1. Project updates:

    • Hsp gene expression + Ctmax project:

      • rewrite results, intro and send out to NJG and SHC (methods done)
      • Submit to PNAS
    • Multiple stressors ms:

      • sent SHC revisions last week
    • Range limits ms: SHC lab gave verbal edit, still need to incorporate

      • Thermal niche ms: Send new draft to Lacy tomorrow.
    • Stressed in nature MS: Samples to rerun.

      • update: Curtis can no longer work+ write on project
      • There are 74 samples: 3 days of RNA isolation + cDNA synthesis. 4 gene targets ran in duplicates is 2 plates per gene = 8 plates total. 2 days for 8 plates.
    • Proteome stability project:

      • ~130 proteins for rudis, ~250 proteins for pogos(we got 500 proteins last time); labelling is ok

        • Rerun mass spec, but loading more proteins (Bethany)
  2. Attending SICB - Jan 3-8 New Orleans, on range limits paper.

    • SICB talk Jan 8 2017, Sunday, 11:45AM.
  3. Thesis related FORMS FOUND HERE

    • Formatting:

      • Introduction (> 3 pages), manuscripts, then synthesis/conclusion (~3 pages) ; SHC and NJG agree

        • started outline
    • Deadlines:

      1. Intent to graduate: February 1st for May.
      2. Send defense committe form to grad college---now
      3. Graduate college format check March 4th
      4. Defense notice 3 weeks before defense (oral defense by March 24th).
      5. Final thesis April 7th.


Page 105: 2016-12-20. Reading a few papers

Reading some papers:

  1. There is a cool paper by Gilchrist and Huey 2001, Evolution, that looks at the cross-generational effect of temperature on fitness in fruit flies. Ones reared from higher temperatures had offspring with higher fitness. This fitness benefit was gained by speeding up development.

    • Gilchrist GW, Huey RB (2001) PARENTAL AND DEVELOPMENTAL TEMPERATURE EFFECTS ON THE THERMAL DEPENDENCE OF FITNESS IN DROSOPHILA MELANOGASTER. Evolution 55:209–214. doi: 10.1111/j.0014-3820.2001.tb01287.x
  2. Cool paper by Huey and Slatkin 1976, The Quarterly Review of Biology which developed the first thermoregulation model in lizards. They construct a mathematical model to quantify the costs and benefits of thermoregulation.

    • Huey RB, Slatkin M (1976) Cost and Benefits of Lizard Thermoregulation. The Quarterly Review of Biology 51:363–384.

    • Other follow up models:

      1. Vickers M, Manicom C, Schwarzkopf L (2011) Extending the cost-benefit model of thermoregulation: High-temperature environments. Am Nat 177(4):452–461.
      2. Christian KA, Tracy CR, Tracy CR (2006) Evaluating thermoregulation in reptiles: An appropriate null model. Am Nat 168(3):421–430.
      3. Sears MW, Angilletta MJ, Schuler MS, et al (2016) Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. PNAS 201604824. doi: 10.1073/pnas.1604824113 (previous citations 1 and 2 found from this citation) link
  1. One of Huey's Science papers that shows different populations from 3 continents track chromosomal changes with climate change.

Balanyá J, Oller JM, Huey RB, et al (2006) Global Genetic Change Tracks Global Climate Warming in Drosophila subobscura. Science 313:1773–1775. doi: 10.1126/science.1131002