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1 Introduction - plain English understanding

Dempster-Shafer Theory (DST) is a way to account for uncertainty when making a decision. For example,
imagine the answer to a question has two mutually exclusive outcomes: yes or no. Then, DST, would
describe this as the frame of discernment, or θ, where,

θ = {yes, no}

But, when we try to estimate these answers, there are multiple possibilities, especially if you’re unsure. For
example, sometimes when you measure something, you’re not sure if the answer is yes or no. All possible
states are represented as a power set, 2θ, such that

2θ = {{∅}, {yes}, {no}, {θ}}

and notice that θ = {yes, no}, which is the set where you’re sure whether the answer is yes or no.

Now, each set can have a numerical value assigned to them and can be expressed as:

m : 2θ− > [0, 1]

and the value is referred to as a mass. From the formulation above, the mass of the powerset is between 0
and 1, referred to as the mass function. The sum of the masses of the powerset add up to 1:

∑
A∈2θ

m(A) = 1

. In other words, for all members (A) within the powerset 2θ, the sum of all these members is 1. Naturally,
values closer to 1 means there is more evidence for that particular set (m(A)). For example,

2θ Mass
{yes} 0.2
{no} 0.6
{yes, no} 0.2
{∅} 0

the mass assignments all sum to 1. Notice that the ∅ is 0, which is a feature of DST expressed in this way.
And notice that typically, in say a logistic regression, the posterior probabilities are a way to fill in these
masses for a {yes} or {no} answer.

Most notably, the support for what we care about, θ have overlaps in the sets. For example, {yes,no}
overlaps with {yes}. So how can we express the real answer given this framework? DST attempts to do this
by forming two levels of support for an answer in θ such that:

• The belief is the lowest level of support

• The plausibility is the highest level of support

The belief in {yes} is the sum of the masses of subset (B) of {yes}, expressed as:

bel({yes}) =
∑

B⊂{yes}

m(B).
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The plausibility of {yes} is the sum of all masses of sets B that intersects with {yes}, expressed as:

pl({yes} =
∑

B∩{yes}

m(B).

In our example from the mass assignments, they would induce the following beliefs and plausibilities:

2θ Mass Belief Plausibility
{yes} 0.2 0.2 0.4
{no} 0.6 0.6 0.8
{yes, no} 0.2 1.0 1.0
{∅} 0.0 0.0 0.0

For example, the belief in {yes} is the mass of {yes} (0.2). The plausibility in {yes} is the mass of {yes} and
{yes,no} because they intersect (0.2 + 0.2 = 0.4).

2 Possible ways to decide based on beliefs and plausibility

Given this evidence, how do we decide on whether the answer to the question? There would be 3 outcomes
instead of 2:

• Yes
• No
• Don’t know ({yes,no})

I’ll simulate some data and show how. Load packages first.

library(tidyverse) # data wrangling, visualization
library(EvCombR) # package for dempster shafer
##ggplot2 settings
T<-theme_bw()+theme(,text=element_text(size=14),

axis.text=element_text(size=14),
panel.grid.major=element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid = element_blank(),
legend.key = element_blank(), axis.title.y=element_text(margin=margin(t=0,r=15,b=0,l=0)),

axis.title.x=element_text(margin=margin(t=15,r=,b=0,l=0)))+
theme(legend.position="none")

# simulate some beliefs
# and plausibilities
# that would lead to each type of outcome
outcome<-rep(c("{yes}","{no}","{yes,no}"),3)
decision<-c(rep("No",3),rep(c("Yes"),3),rep(c("Don't know"),3))
belief<-c(c(.2,.6,.2),c(.6,.2,.2),c(.25,.25,.5))
pl<-c(c(0.4,.8,1),c(0.8,.4,1),c(0.75,.75,1))
d<-data.frame(outcome,decision,belief,pl)
d<-d%>%
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dplyr::filter(outcome!="{yes,no}")
#filter out {yes,no}
d$decision<-factor(d$decision,levels=c("Yes","No","Don't know"))

#plot it out
ggplot(d,aes(x=outcome))+

geom_errorbar(aes(ymax=pl,ymin=belief),
width=.5,linewidth=.85)+

facet_wrap(~decision)+
scale_y_continuous(limits = c(0,1),

breaks=seq(0,1,.1),
labels=seq(0,1,.1))+

ylab("Support")+xlab("Outcome")+
geom_hline(yintercept=.5,linetype="dotdash")+T
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Here, you can see that the lower bound of the range in each outcome is the belief and the upper bound of
the range is the plausibility. Each panel would show the decision being made. Notice that in the “Don’t
know” panel, the levels of support overlap. There are ways to make decisions even if the levels of support
overlap but we won’t get into that.
DST is very flexible and there are no set rules for constructing mass functions.
Typically, posterior probabilities from say a logistic regression would show a flat level of support (only the
belief). However, the posterior probabilities can be restructured into a mass function by accounting for model
uncertainty. Model uncertainty can be extracted from a confusion matrix. So the posterior probability for
yes would be scaled by the positive predictive value, which is the degree of confidence in the model to make
a yes call. This is how we can account for uncertainty when using a predictive model.
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3 Simulations of model uncertainty

Here, I’ll simulate posterior probabilities, and model uncertainties to determine how it impacts decision
making.

#simulate a range of model uncertainty
#both in the positive predictive value
# and negative predictive value

## simulate a 1000 samples with posterior probs
yes<-rep(seq(0,1,.1),11)

#number of different model uncertainties
mu<-sort(rep(seq(0,1,.1),11)) #simulate model
# uncertainty from 0 to 1 in .1 steps
dat<-data.frame(cbind(yes,mu))
dat$no<- (1-dat$yes) # get the no post prob
#assuming model uncertainty is the same
# same PPV and NPV
##now we can construct mass assignments
dat<-dat%>%

mutate(y.mass=yes*mu,n.mass=no*mu,yn.mass=1-y.mass-n.mass,y.pl=yn.mass+y.mass,n.pl=yn.mass+n.mass)

##lets set up factors by decision point
#if the uppper bound of yes is less than
#lower bound of no, then decide NO

#if upper bound of no is less than
#lower bound of yes, then decide YES
dat<-dat%>%

mutate(decision=ifelse(y.pl<n.mass,"No",ifelse(n.pl<y.mass,"Yes","Don't know")))
glimpse(dat)

## Rows: 121
## Columns: 9
## $ yes <dbl> 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 0.0, 0~
## $ mu <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0~
## $ no <dbl> 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 1.0, 0~
## $ y.mass <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0~
## $ n.mass <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0~
## $ yn.mass <dbl> 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0~
## $ y.pl <dbl> 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1~
## $ n.pl <dbl> 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1~
## $ decision <chr> "Don’t know", "Don’t know", "Don’t know", "Don’t know", "Don’~

#need to convert to long
d.long<-dat%>%

pivot_longer(cols=y.mass:n.mass,names_to = "Outcome",values_to = "support")%>%
mutate(plaus=support+yn.mass)

##let's plot out the simulation
ggplot(d.long,aes(x=yes,colour=decision))+

geom_errorbar(aes(ymax=plaus,ymin=support),
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width=.5,linewidth=.85)+
facet_wrap(~mu,nrow=4)+
scale_y_continuous(limits = c(0,1),

breaks=seq(0,1,.1),
labels=seq(0,1,.1))+

ylab("Support")+xlab("Simulated Posterior Probabilities")+
geom_hline(yintercept=.5,linetype="dotdash")+T+theme(legend.position = "top")
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decision Don't know No Yes
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Thoughts:

What you can see is that decisions can’t be made if there is too much uncertainty (0-0.5 model performance).
But, at 0.6 model performance, posterior probabilities have to be very high in order to make a confident
decision. And then you can see traditionally, if we assume a perfect model, model performance = 1, then
the support bands are flat, which is typically how we treat predictive models in general.

4 Summary

DST offers a flexible and creative approach to accounting for uncertainty when making a decision. DST
re-frames sources of evidence such that uncertain cases can have some level of evidence assigned to it. The
assignment of the degree of evidence, or masses can resemble probabilities across all answers. The approach
outlined here involves restructuring poster probabilities from a model into masses. This is done by scaling
the posterior probabilities by model performance, which is derived from the confusion matrix. In traditional
machine learning approaches, data are split into training and testing. The confusion matrix of the model
applied to the testing dataset could be used. Based on the masses, then the degree of support can be
calculated to help inform decision-making.

5 RshinyApp

Try plugging in your own posterior probabilities or masses and plug in your own PPV or NPV in this
RShinyApp.
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7 Session info

sessionInfo()

## R version 4.3.1 (2023-06-16 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
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## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] EvCombR_0.1-4 lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0
## [5] dplyr_1.1.2 purrr_1.0.2 readr_2.1.4 tidyr_1.3.0
## [9] tibble_3.2.1 ggplot2_3.4.3 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 highr_0.10 compiler_4.3.1 tidyselect_1.2.0
## [5] scales_1.2.1 yaml_2.3.7 fastmap_1.1.1 R6_2.5.1
## [9] labeling_0.4.2 generics_0.1.3 knitr_1.43 munsell_0.5.0
## [13] pillar_1.9.0 tzdb_0.4.0 rlang_1.1.1 utf8_1.2.3
## [17] stringi_1.7.12 xfun_0.40 timechange_0.2.0 cli_3.6.1
## [21] withr_2.5.0 magrittr_2.0.3 digest_0.6.33 grid_4.3.1
## [25] rstudioapi_0.15.0 hms_1.1.3 lifecycle_1.0.3 vctrs_0.6.3
## [29] evaluate_0.21 glue_1.6.2 farver_2.1.1 fansi_1.0.4
## [33] colorspace_2.1-0 rmarkdown_2.24 tools_4.3.1 pkgconfig_2.0.3
## [37] htmltools_0.5.6
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